Skip to main content
Advanced Search

Filters: Tags: North America (X)

1,021 results (16ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
Categories: Data; Types: Citation, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Bald Point State Park, CMGP, Coastal and Marine Geology Program, DSAS, Digital Shoreline Analysis System, All tags...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
Whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate twice each year through the Great Plains in North America. Recovery activities for this endangered species include providing adequate places to stop and rest during migration, which are generally referred to as stopover sites. To assist in recovery efforts, initial estimates of stopover site use intensity are presented, which provide opportunity to identify areas across the migration range used more intensively by whooping cranes. We used location data acquired from 58 unique individuals fitted with platform transmitting terminals that collected global position system locations. Radio-tagged birds provided 2,158 stopover sites over 10...
thumbnail
This metadata is for the vegetation and land-use geo-spatial database for Minidoka National Historic Site (MIIN), Idaho and surrounding areas. This project is authorized as part of the USGS/NPS Vegetation Classification and Mapping Program. The program is being administered by the National Park Service's (NPS) Inventory and Monitoring Program in conjunction with the Biological Resources Division (BRD) of the United States Geological Survey (USGS). This mapping effort was performed by Cogan Technology Inc. (CTI) as a free service to the National Park Service.
thumbnail
This metadata is for the vegetation and land-use geo-spatial database for Pu'ukohola Heiau National Historic Site (PUHE) , Island of Hawai'i and surrounding areas. This project is authorized as part of the USGS/NPS Vegetation Inventory Program. The program is being administered by the National Park Service's (NPS) Inventory and Monitoring Program in conjunction with the Biological Resources Division (BRD) of the United States Geological Survey (USGS). This mapping effort was performed by Cogan Technology Inc. (CTI) under contract to the Pacific Island Inventory and Monitoring Network (UCBN) of the National Park Service.
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project, documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood...
thumbnail
The data document the results of several microbe bioassays performed by the USGS on Phragmites australis plants, including those performed on mature leaves, seedlings, and dead leaf tissues exploration of the literature to find accounts of microbes associated with Phragmites worldwide. For the bioassays, we prepared 162 pure cultures isolated from Phragmites plants in North America along the east coast, Florida, the Gulf of Mexico, and the Great Lakes area, 125 of which were from a previous study, and 38 represent new collections. The DNA sequences used to identify the 37 new collections are included. Microbes were isolated from plants collected from 2015-2018. We performed assays using both North American plant...
Aerial images in the vicinity of USGS gaging station #07094500 Arkansas River at Parkdale, Colorado were collected on March 20-22, 2018, using Unmanned Aircraft Systems (UAS, or "drones"). Data were processed using structure-from-motion analysis to generate a three-dimensional point cloud that identifies pixels from multiple images representing the same object and calculates the x, y, and z coordinates of that object/pixel. The point cloud was processed to create a digital surface model of the site. Finally, source images were stitched together based on shared pixels and orthogonally adjusted to create a high resolution (approximately 2 cm pixel size) orthoimage for the study area. The orthomosaic image captures...
thumbnail
This dataset provides spatial predictions of habitat suitability for Gopherus agassizii (Agassiz’s desert tortoise), Gopherus morafkai (Morafka’s desert tortoise) and a pooled-species model under current conditions (1950 – 2000 yr). The raster layers contained here accompany the manuscript Inman et al. 2019 and were used to evaluate subtle ecological niche differences between G. agassizii and G. morafkai, and identify local species-environment relationships. Spatial predictions of habitat suitability were created using MaxEnt version 3.4.0 (Phillips et al., 2006), a widely-used software for SDM in presence-background frameworks. Detailed methods are provided in Inman et al. 2019. Inman et al. 2019. Local niche...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
The data release consists of a single NetCDF file with results from a suite of ice sheet model simulations. We ran with Community Ice Sheet Model (CISM2) with input from models used in the Palaeoclimate Modelling Intercomparison 3 (PMIP3). The NetCDF file contains output from model year 50,000 for a limited number of variables to keep the file size reasonably small. This subset of variables are the ones we focus our analysis and paper on.
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, OGC WFS Layer, OGC WMS Layer, Raster, Shapefile; Tags: Atlantic Ocean, Barrier Island, Bayesian Network, CMHRP, Cape Cod, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for crafting approaches that balance the needs of humans and native species. Given this increasing need to forecast sea-level rise effects on barrier islands in the near and long terms, we are developing Bayesian networks to evaluate and to forecast the cascading effects of sea-level rise on shoreline change, barrier island state, and piping plover habitat availability. We use publicly available data products, such as lidar, orthophotography, and geomorphic feature sets derived from those, to extract metrics of barrier island characteristics at consistent sampling distances. The metrics are then incorporated...


map background search result map search result map Montreal, Canada M6.2 NSF-ICF Ice Core - FREMONT GLACIER 98-4 Minidoka National Historic Site Vegetation Mapping Project - Spatial Vegetation Data Pu`ukohola Heiau National Historic Site Vegetation Mapping Project - Spatial Vegetation Data Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Louisiana Shorelines of the Florida north (FLnorth) coastal region used in shoreline change analysis Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral) Intersects for Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Composite Habitat Suitability Index Raster Dataset Spatial Predictions of Mojave Desert Tortoise, Sonoran Desert Tortoise and Pooled Species Habitat Suitability for present-day (1950 – 2000 yr) points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Development: Development delineation: Parker River, MA, 2014 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014 Development: Development delineation: Cape Lookout, NC, 2014 The effects of North American fungi and bacteria on Phragmites australis leaves 2017-2019, with comparisons to the global Phragmites microbiome Orthorectified Mosaic Photograph of a Portion of the Arkansas River at Parkdale, Colorado, March, 2018 Orthorectified Mosaic Photograph of a Portion of the Arkansas River at Parkdale, Colorado, March, 2018 Pu`ukohola Heiau National Historic Site Vegetation Mapping Project - Spatial Vegetation Data Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for central North Carolina (NCcentral) Minidoka National Historic Site Vegetation Mapping Project - Spatial Vegetation Data Development: Development delineation: Cape Lookout, NC, 2014 Development: Development delineation: Parker River, MA, 2014 points, transects, beach width: Barrier island geomorphology and shorebird habitat metrics at 50-m alongshore transects and 5-m cross-shore points: Monomoy Island, MA, 2013-2014 Intersects for Martha's Vineyard, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Intersects for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 DCpts, DTpts, SLpts: Dune crest, dune toe, and mean high water shoreline positions: Cape Lookout, NC, 2014 Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for Louisiana Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for Louisiana Composite Habitat Suitability Index Raster Dataset Shorelines of the Florida north (FLnorth) coastal region used in shoreline change analysis Spatial Predictions of Mojave Desert Tortoise, Sonoran Desert Tortoise and Pooled Species Habitat Suitability for present-day (1950 – 2000 yr) The effects of North American fungi and bacteria on Phragmites australis leaves 2017-2019, with comparisons to the global Phragmites microbiome