Skip to main content
Advanced Search

Filters: Tags: P2-Changes in Plant and Animal Species Due to Climate Change (X) > partyWithName: Allison, Steven D. (X)

14 results (17ms)   

View Results as: JSON ATOM CSV
Fungi influence nutrient cycling in terrestrial ecosystems, as they are major regulators of decomposition and soil respiration. However, little is known about the substrate preferences of individual fungal species outside of laboratory culture studies. If active fungi differ in their substrate preferences in situ, then changes in fungal diversity due to global change may dramatically influence nutrient cycling in ecosystems. To test the responses of individual fungal taxa to specific substrates, we used a nucleotide-analogue procedure in the boreal forest of Alaska (USA). Specifically, we added four organic N compounds commonly found in plant litter (arginine, glutamate, lignocellulose, and tannin-protein) to litterbags...
Fungi influence nutrient cycling in terrestrial ecosystems, as they are major regulators of decomposition and soil respiration. However, little is known about the substrate preferences of individual fungal species outside of laboratory culture studies. If active fungi differ in their substrate preferences in situ, then changes in fungal diversity due to global change may dramatically influence nutrient cycling in ecosystems. To test the responses of individual fungal taxa to specific substrates, we used a nucleotide-analogue procedure in the boreal forest of Alaska (USA). Specifically, we added four organic N compounds commonly found in plant litter (arginine, glutamate, lignocellulose, and tannin-protein) to litterbags...
Fungi influence nutrient cycling in terrestrial ecosystems, as they are major regulators of decomposition and soil respiration. However, little is known about the substrate preferences of individual fungal species outside of laboratory culture studies. If active fungi differ in their substrate preferences in situ, then changes in fungal diversity due to global change may dramatically influence nutrient cycling in ecosystems. To test the responses of individual fungal taxa to specific substrates, we used a nucleotide-analogue procedure in the boreal forest of Alaska (USA). Specifically, we added four organic N compounds commonly found in plant litter (arginine, glutamate, lignocellulose, and tannin-protein) to litterbags...
thumbnail
Fungi influence nutrient cycling in terrestrial ecosystems, as they are major regulators of decomposition and soil respiration. However, little is known about the substrate preferences of individual fungal species outside of laboratory culture studies. If active fungi differ in their substrate preferences in situ, then changes in fungal diversity due to global change may dramatically influence nutrient cycling in ecosystems. To test the responses of individual fungal taxa to specific substrates, we used a nucleotide-analogue procedure in the boreal forest of Alaska (USA). Specifically, we added four organic N compounds commonly found in plant litter (arginine, glutamate, lignocellulose, and tannin-protein) to litterbags...


    map background search result map search result map Climate change feedbacks to microbial decomposition in boreal soils Functional diversity in resource use by fungi Resistance of microbial and soil properties to warming treatment seven years after boreal fire Resistance of microbial and soil properties to warming treatment seven years after boreal fire Functional diversity in resource use by fungi Climate change feedbacks to microbial decomposition in boreal soils