Skip to main content
Advanced Search

Filters: Tags: Rangeland (X) > Types: Citation (X) > Types: Journal Citation (X)

3 results (14ms)   

View Results as: JSON ATOM CSV
Three mixed prairie sites at Mandan, N.D. were grazed heavily (0.9 ha ), moderately (2.6 ha ), or left ungrazed (exclosure) since 1916. These sites provided treatments to study the effects of long-term grazing on soil organic carbon and nitrogen content and to relate changes in soil carbon and nitrogen to grazing induced changes in species composition. Blue grama [Bouteloua gracilis (H.B.K.) Lag. ex Griffiths] accounted for the greatest change in species composition for both grazing treatments. Relative foliar cover of blue grama was 25% in 1916 and 86% in 1994 in the heavily grazed pasture and 15% in 1916 to 16% in 1994 in the moderately grazed pasture. Total soil nitrogen content was higher in the exclosure (1.44...
State-and-transition models are increasingly being used to guide rangeland management. These models provide a relatively simple, management-oriented way to classify land condition (state) and to describe the factors that might cause a shift to another state (a transition). There are many formulations of state-and-transition models in the literature. The version we endorse does not adhere to any particular generalities about ecosystem dynamics, but it includes consideration of several kinds of dynamics and management response to them. In contrast to previous uses of state-and-transition models, we propose that models can, at present, be most effectively used to specify and qualitatively compare the relative benefits...
thumbnail
Invasion of the exotic annual grass Bromus tectorum into stands of the native perennial grass Hilaria jamesii significantly reduced the abundance of soil biota, especially microarthropods and nematodes. Effects of invasion on active and total bacterial and fungal biomass were variable, although populations generally increased after 50+ years of invasion. The invasion of Bromus also resulted in a decrease in richness and a species shift in plants, microarthropods, fungi, and nematodes. However, despite the depauperate soil fauna at the invaded sites, no effects were seen on cellulose decomposition rates, nitrogen mineralization rates, or vascular plant growth. When Hilaria was planted into soils from not-invaded,...


    map background search result map search result map Soil Biota Can Change after Exotic Plant Invasion: Does This Affect Ecosystem Processes? Soil Biota Can Change after Exotic Plant Invasion: Does This Affect Ecosystem Processes?