Skip to main content
Advanced Search

Filters: Tags: Remote sensing (X) > Types: OGC WFS Layer (X) > Extensions: Citation (X)

4 results (10ms)   

Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Final Report - Executive Summary: This final project report is prepared to summarize the research project titled “Assessing evapotranspiration rate changes for proposed restoration of the forested uplands of the Desert Landscape Conservation Cooperatives (LCC)” for the Desert LCC of the Bureau of Reclamation as a requirement for closing out the project. This report includes the scope of work, summary of research project, results, and conclusions.Among all of the components of the terrestrial water cycle, evapotranspiration (ET) consumes the largest amount of water. Accurate estimation of ET is very important to understand the influence of ET to the hydrologic response of recharge and runoff processes in the water...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, ATMOSPHERE, ATMOSPHERE, ATMOSPHERIC WATER VAPOR, ATMOSPHERIC WATER VAPOR, All tags...
thumbnail
With extraordinary resolution and accuracy, Light Detection and Ranging (LiDAR)-derived digital elevation models (DEMs) have been increasingly used for watershed analyses and modeling by hydrologists, planners and engineers. Such high-accuracy DEMs have demonstrated their effectiveness in delineating watershed and drainage patterns at fine scales in low-relief terrains. However, these high-resolution datasets are usually only available as topographic DEMs rather than hydrologic DEMs, presenting greater land roughness that can affect natural flow accumulation. Specifically, locations of drainage structures such as road culverts and bridges were simulated as barriers to the passage of drainage. This paper proposed...
thumbnail
Riparian grasslands dominated by big sacaton (Sporobolus wrightii) once covered floodplains across the southwest, but have been reduced to some 5% of their historical extent. Sacaton stands that remain provide key resources for watershed function, wildlife, and livestock—yet may need special management to sustain these benefits. This report describes mapping methods and management recommendations that can be applied to riparian grasslands throughout the region. By examining sacaton grasslands in the Las Cienegas National Conservation Area, this project also refines methods for evaluating ecological condition, and provides managers at this site with detailed maps of both high-quality habitat and restoration needs.
thumbnail
Inundation is a critical parameter of wetland hydrologic performance. This study uses Annual Habitat Survey data from 2004 to 2012 in the Rainwater Basin in south-central Nebraska to examine differences between the actual inundation conditions and three datasets: the National Wetland Inventory (NWI), the Soil Survey Geographic database (SSURGO), and LiDAR-derived depressions. The results show that current wetland inundated areas were well overlaid with these datasets (99.9% in SSURGO data, 67.9% in NWI data, and 87.3;% in LiDAR-derived depressions). However, the hydrologic degradation of playa wetlands was not reflected in these datasets. In SSURGO data, only 13.3% of hydric soil footprint areas were inundated and...


    map background search result map search result map Sacaton Riparian Grasslands Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC Examining Playa Wetland Inundation Conditions for National Wetland Inventory, Soil Survey Geographic Database, and LiDAR Data Drainage Structure Datasets and Effects on LiDAR-Derived Surface Flow Modeling Sacaton Riparian Grasslands Drainage Structure Datasets and Effects on LiDAR-Derived Surface Flow Modeling Examining Playa Wetland Inundation Conditions for National Wetland Inventory, Soil Survey Geographic Database, and LiDAR Data Report and Publications: Assessing Evapotranspiration Rate Changes for Proposed Restoration of the Forested Uplands of the DLCC