Skip to main content
Advanced Search

Filters: Tags: Riparian (X) > partyWithName: Southern Rockies Landscape Conservation Cooperative (X)

24 results (1.4s)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This project had two primary goals: 1) To develop a process for integrating data from multiple sources to improve predictions of climate impacts for wildlife species; and 2) To provide data on climate and related hydrological change, fire behavior under future climates, and species’ distributions for use by researchers and resource managers.We present within this report the process used to integrate species niche models, fire simulations, and vulnerability assessment methods and provide species’ reports that summarize the results of this work. Species niche model analysis provides information on species’ distributions under three climate scenarios and time periods. Niche model analysis allows us to estimate the...
thumbnail
Our proposal addresses Funding Category Ill by evaluating natural resource management practices and adaptation opportunities. More specifically, our project addresses Science Need #6 to improve monitoring and inventory of watersheds and ecosystems (including invasive species). Our proposed study will occur within the Southern Rockies Landscape Conservation Cooperative (LCC) (upper Virgin River, UT) and the Desert LCC (lower Virgin River, AZ and NVL and therefore will be submitting to both cooperatives. Invasive saltcedar (Tamarix spp.) is the third most abundant tree in Southwestern riparian systems (Friedman et al. 2005). Resource managers must often balance the management goals of protecting wildlife species and...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
Introduction: Tamarisk (Tamarix spp., also saltcedar) is a non-native tree introduced to the United States during the 19th century as an ornamental species and solution to erosion in the American West (Robinson 1965). Tamarisk can form dense monotypic stands, which have been linked to a decline in richness and diversity of native plants (Engel-Wilson & Ohmart 1978; Lovich et al. 1994) and wildlife (Anderson et al. 1977; Durst et al. 2008) in riparian areas. As a result, natural resource managers have invested millions of dollars to control tamarisk (Shafroth & Briggs 2008). Few studies have conducted community-level analyses to document the impact of one of these methods, the introduction of a native enemy or predator,...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
The Arizona Game and Fish Department (AGFD) recognizes the need for a strong data foundation to inform science-based decisions for fisheries management at a watershed level. In preparation for a shift towards comprehensive watershed-scale planning, AGFD is developing a fisheries data management system with an initial focus on compiling and formatting several hundred thousand fish survey and stocking records. Fish data will be integrated within a Geographic Information System (GIS) by georeferencing observations to an existing national spatial framework (National Hydrography Dataset), which will allow for broader transferability to watersheds shared with neighboring states, creating a seamless layer not limited by...
thumbnail
We are providing geospatial data layers of climate, fire, biome and predicted species distributions for download at our project website. Links to presentations, data descriptions and zip files containing data layers can be found here. Over the next few months, we will continue to upload webinars and new training tutorials that demonstrate the application of these datasets to new questions and species. Climate and environmental data can readily be used to generate new models for additional species or other applications to describe habitats and future conditions within New Mexico. Initial fire model output is available as raster images and tabulated values that can be used in analyses of wildfire risk or hazardous...
thumbnail
Executive Summary: Fisheries data compilation efforts for this project fell within two large watersheds in Arizona; the Verde River watershed (Desert LCC) and the Little Colorado River watershed (Southern Rockies LCC). We divided the project into two phases; 1) data compilation for the Arizona Game and Fish Fisheries Information Systems (FINS) and 2) a demonstration of FINS through model development and species distribution data. During phase 1, we compiled, cleaned, assigned National Hydrography Dataset (NHD) reach codes to historical data for 113,230 fish records in the Verde River watershed and 43,828 fish records from the Little Colorado River watershed. These records were standardized to meet the Arizona Game...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
Project ObjectivesConnect scientists/researchers to resource managers, review relevant science projects recently completed by the SRLCC and others, and discuss how resulting data and tools can be applied or incorporated into decision-making processes;Facilitate identification of landscape-scale resource stressors (climate and non-climate related) and managers most pressing needs and questions within each of the geographic areas;Facilitate identification of locally significant focal resources not currently prioritized by the SRLCC;Facilitate identification of key attributes of focal resources (both initial and newly identified) indicative desirable conditions;Facilitate identification of most significant direct threats...
thumbnail
Executive Summary: Riparian ecosystems are vital components of the semi-arid landscape because woody riparian plants provide resources that are absent in adjacent vegetation types. Historically, flood played a key role in shaping the composition and structure of riparian forests. In recent decades, however, the frequency and magnitude of floods has decreased and the timing of peak discharge has been altered. In addition, wildfire has increased in importance as an agent of disturbance along many streams. We initiated this study to increase our understanding of fire, flood, and drought processes at our Middle Rio Grande study sites and develop tools that managers of other systems can use to project the response of...
thumbnail
A strong data foundation is needed to inform science-based decisions for fisheries management at a watershed level. In preparation for a shift towards comprehensive watershed-scale planning, Arizona Game and Fish Department (AGFD) is developing a fisheries data management system with an initial focus on compiling and formatting several hundred thousand fish survey and stocking records. Fish data will be integrated within a Geographic Information System (GIS) by georeferencing observations to an existing national spatial framework (National Hydrography Dataset), which will allow for broader transferability to watersheds shared with neighboring states, creating a seamless layer not limited by state boundaries. In...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
Resource managers must often balance the management goals of protecting wildlife species and habitats with control of non-native and invasive plants. This project will determine if the introduction of the biocontrol agent (tamarisk leaf beetle, Diorhabda spp.) as an insect consumer and defoliator of saltcedar influences wildlife populations and communities via alterations to food resources and/or habitat. By taking advantage of an unprecedented natural experiment and two years of pre-biocontrol monitoring, the researchers will track changes in amphibian and reptile (herpetofauna), and avian communities as biocontrol enters a system dominated by a non-native plant species. The investigators predict that the introduction...
thumbnail
We represent vulnerability as matrix that relates impacts with adaptive capacity. Vulnerability is high when impact is high and adaptive capacity is low. Vulnerability is moderate when either the impact is high and adaptive capacity is high, or if impact is low and adaptive capacity is low. Vulnerability is low when impact is low and adaptive capacity is high. We represent these conceptually as categorical for ease of discussion, but in reality there is continuum of vulnerabilities, and a different adaptation strategies and likely conservation actions, depending on the characteristics of the vulnerability.
thumbnail
Streamflows in late spring and summer have declined over the last century in the western U.S. and mean annual streamflow is projected to decrease by six to 25% over the next 100 years. In arid and semi-arid regions of the western US, it is likely that some perennial streams will shift to intermittent flow regimes in response to climate-driven changes in timing and magnitude of precipitation, runoff, and evaporation. The project will address the following two research question: how will small stream (1st-3rd order) low flow hydrology be impacted by predicted longer, drier summers in the Upper Colorado River Basin under climate change and in turn, what will be the resulting impacts on riparian plant communities?...
Categories: Data, Project; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AZ-01, Applications and Tools, Arizona, CO-03, Colorado, All tags...
thumbnail
The Grassland, Shrubland, Desert Program of the U.S. Forest Service, Rocky Mountain Research Station intends to evaluate the interactive effects of fire and climate change on the presence and long-term persistence of native and non-native species within Rio Grande riparian and wetland habitats of the Desert and Southern Rockies LCCs. Decision support tools and maps will be produced that will help resource managers identify conditions and locations where biodiversity will be most affected by future changes and identify needs with respect to species conservation and invasive species management.This project was co-funded by multiple Landscape Conservation Cooperatives: Desert LCC and the Southern Rockies LCC.
thumbnail
Amphibians and reptiles (herpetofauna) have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. Our objective was to relate variation in herpetofauna abundance to changes in habitat caused by a beetle used for Tamarix biocontrol (Diorhabda carinulata; Coleoptera: Chrysomelidae) and riparian restoration. During 2013 and 2014, we measured vegetation and monitored herpetofauna via trapping and visual encounter surveys (VES) at locations affected by biocontrol along the Virgin River in the Mojave Desert of the southwestern United States. Twenty-one sites were divided into four riparian stand types based on density and percent cover of dominant trees (Tamarix,...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2012, AZ-01, AZ-02, AZ-03, AZ-04, All tags...
thumbnail
We propose to identify future risk of wildlife population decline for species inhabiting the Rio Grande, New Mexico. Specifically, we will examine and quantify the interactive effect of fire and climate change on the presence and long-term persistence of native and nonnative species in residing within Rio Grande riparian and wetland habitats. We will build upon recent species vulnerability assessment work conducted for the Rio Grande and incorporate new data and model output regarding fire behavior under different climate scenarios. Predictions for future species distributions will be coupled with scores representing species adaptive capacity to quantify vulnerability to changing climate and disturbance regimes....
thumbnail
Stream flow in the Colorado River and Dolores River corridors has been significantly modified by water management, and continued flow alteration is anticipated in future decades with projected increases in human water demand. Bottomland vegetation has been altered as well, with invasion of non-native species, increases in wildfire and human disturbance, and currently, rapid shifts in riparian communities due to biological and mechanical tamarisk control efforts. In light of these conditions, land managers are in need of scientific information to support management of vegetation communities for values such as healthy populations of sensitive fish and wildlife species and human recreation. We propose to address these...
thumbnail
Rivers in the SRLCC differ from one another in flow characteristics, levels of regulation, and vulnerability to wildfire; characteristics that will be influenced by climate change (Seager et al. 2007, Mortiz et al. 2012). An understanding of how changes in streamflow and wildfire frequency will affect structure of live and dead woody vegetation is needed to for managers assess the vulnerability of riparian obligate species to climate change. We are developing stochastic transition models for cottonwood trees and snags along the Middle Rio Grande by modifying Lytle and Merritts (2004) stage-structured cottonwood population model. By incorporating influences of flood and wildfire into stage transition rates, we can...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Conservation NGOs, Cultural Resources, Decision Support, EARTH SCIENCE > LAND SURFACE > LANDSCAPE, Federal resource managers, All tags...
thumbnail
This project will build upon a recently completed synthesis product for the Southwest and review and analyze vulnerability assessments of aquatic species and habitats within the Southern Rockies Landscape Conservation Cooperative. Southwestern riparian systems support a disproportionate amount of the regional biodiversity and are likely to be strongly affected by changes in climate with a concordant disproportionate effect on surrounding landscapes and features. The SRLCC encompasses the Upper Colorado River Basin and a portions of the Lower Colorado and Rio Grande Basins. These systems represent some of the most critical water sources in the west and are likely to experience some of the most extreme changes in...
thumbnail
We represent vulnerability as matrix that relates impacts with adaptive capacity. Vulnerability is high when impact is high and adaptive capacity is low. Vulnerability is moderate when either the impact is high and adaptive capacity is high, or if impact is low and adaptive capacity is low. Vulnerability is low when impact is low and adaptive capacity is high. We represent these conceptually as categorical for ease of discussion, but in reality there is continuum of vulnerabilities, and a different adaptation strategies and likely conservation actions, depending on the characteristics of the vulnerability.


map background search result map search result map Modeling Low Stream Flows and Assessing the Ecological Impacts of Potential Stream Drying under Climate Change in the Upper Colorado River Basin Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC A Landscape Approach for Fisheries Database Compilation and Predictive Modeling (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Effects of Bio-control and Restoration on Wildlife in Southwestern Riparian Habitats (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Vulnerability Assessments: Synthesis and Application for Aquatic Species and their Habitats A Landscape Approach for Fisheries Database Compilation and Predictive Modeling Effects of Bio-Control and Restoration on Wildlife in Southwestern Riparian Habitats Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Riparian Vulnerability, RCP 4.5 Riparian Vulnerability, RCP 8.5 Riparian Impact Combined, RCP 4.5 Four Corners and Upper Rio Grande Adaption Forums Final Report: A Landscape Approach to Fisheries Database Compilation and Predictive Modeling Final Report: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Final Report: Effects of Biocontrol and Restoration on Wildlife in Southwestern Riparian Habitats Publication: The effects of riparian restoration following saltcedar (Tamarix spp.) biocontrol on habitat and herpetofauna along a desert stream Maps and Data: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Final Reports: Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the DLCC Effects of Bio-control and Restoration on Wildlife in Southwestern Riparian Habitats (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Effects of Bio-Control and Restoration on Wildlife in Southwestern Riparian Habitats Final Report: Effects of Biocontrol and Restoration on Wildlife in Southwestern Riparian Habitats Publication: The effects of riparian restoration following saltcedar (Tamarix spp.) biocontrol on habitat and herpetofauna along a desert stream Science-Based Riparian Restoration Planning on the Colorado and Dolores Rivers: A Decision Support Tool and Investigation of Habitat Complexity at Tributary Junctions Final Reports: Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the DLCC Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Modeling Woody Plant Regeneration and Debris Accumulation under Future Streamflow and Wildfire Scenarios in the SRLCC (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Final Report: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change Maps and Data: Vulnerability of Riparian Obligate Species in the Rio Grande to the Interactive Effects of Fire, Hydrological Variation and Climate Change A Landscape Approach for Fisheries Database Compilation and Predictive Modeling (Not listed in the LCC Science Catalog due to Desert LCC co-funding and catalog administering) Modeling Low Stream Flows and Assessing the Ecological Impacts of Potential Stream Drying under Climate Change in the Upper Colorado River Basin A Landscape Approach for Fisheries Database Compilation and Predictive Modeling Final Report: A Landscape Approach to Fisheries Database Compilation and Predictive Modeling Vulnerability Assessments: Synthesis and Application for Aquatic Species and their Habitats Four Corners and Upper Rio Grande Adaption Forums Riparian Vulnerability, RCP 4.5 Riparian Vulnerability, RCP 8.5 Riparian Impact Combined, RCP 4.5