Skip to main content
Advanced Search

Filters: Tags: Rivers, Streams and Lakes (X) > Extensions: Budget (X)

75 results (57ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Streamflow in the Colorado River is heavily influenced by high-elevation snowpack. Warming temperatures in spring can reduce snow-fed flows, with serious implications for the water supplies that support communities and wildlife. While it is already well-known that precipitation has a significant influence on river flow, recent observations suggest that temperature and the amount of water in soil may also influence streamflow. In the face of a changing climate, it is important that resource managers understand how factors such as changing temperatures and precipitation will affect this vital water source. To address this need, researchers are examining records of streamflow, temperature, soil moisture, and precipitation...
thumbnail
Resource managers, policymakers, and scientists require tools to inform water resource management and planning. Information on hydrologic factors – such as streamflow, snowpack, and soil moisture – is important for understanding and predicting wildfire risk, flood activity, and agricultural and rangeland productivity, among others. Existing tools for modeling hydrologic conditions rely on information on temperature and precipitation. This project sought to evaluate different methods for downscaling global climate models – that is, taking information produced at a global scale and making it useable at a regional scale, in order to produce more accurate projections of temperature and precipitation for the Pacific...
thumbnail
Changing climate conditions such as increasing droughts, floods, and wildfires, hotter temperatures, declining snowpacks, and changes in the timing of seasonal events are already having an impact on wildlife and their habitats. In order to make forward-looking management decisions that consider ongoing and future projected changes in climate, managers require access to climate information that can be easily integrated into the planning process. Co-production, a process whereby scientists work closely with managers to identify and fill knowledge gaps, is an effective means of ensuring that science results will be directly useful to managers. Through a multi-phase project, researchers are implementing co-production...
thumbnail
Road crossings at rivers and streams can create barriers to the movement of migratory fish when they are improperly designed or constructed. Washington State is home to several threatened species of salmon and trout, including bull trout, and recovery plans for these fish include repairing or replacing culverts that currently block their passage. The state is currently looking to replace approximately 1,000 culverts at an estimated cost of $2.45 billion. As engineers re-design these culverts, which typically have a service life of 50-100 years, it will be important to consider how changing climate conditions will impact streams in the region. Climate change is projected to increase peak streamflows, and therefore...
thumbnail
The Integrated Scenarios of the Future Northwest Environment project (an FY2012 NW CSC funded project), resulted in several datasets describing projected changes in climate, hydrology and vegetation for the 21st century over the Northwestern US. The raw data is available in netCDF format, which is a standard data file format for weather forecasting/climate change/GIS applications. However, the sheer size of these datasets and the specific file format (netCDF) for data access pose significant barriers to data access for many users. This is a particular challenge for many natural/cultural resource managers and others working on conservation efforts in the Pacific Northwest. The goal of this project was to increase...
thumbnail
The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project supports climate-smart conservation and management across forests of northern Idaho...
thumbnail
There is growing evidence that headwater stream ecosystems are especially vulnerable to changing climate and land use, but managers are challenged by the need to address these threats at a landscape scale, often through coordination with multiple management agencies and landowners. This project sought to provide an example of cooperative landscape decision-making by addressing the conservation of headwater stream ecosystems in the face of climate change at the watershed scale. Predictive models were built for critical resources to examine the effects of the potential alternative actions on the objectives, taking account of climate effects and examining whether there are key uncertainties that impede decision making....
thumbnail
Coral ecosystems of West Maui support a vibrant tourism industry and provide tangible economic benefits to the community. Hawaiian nearshore reefs generate about $800 million in annual revenue, not including the ecosystem services they provide - such as critical habitat for diverse fish species and buffering coasts from storm surges. The Hawaiian economy depends on healthy coral ecosystems, yet reefs are currently facing multiple threats, including changing climate conditions, local land-based pollution, and sediment erosion. Erosion of soils into nearshore coastal zones is a chief concern facing land managers in West Maui. Intermittent rainfall can carry sediment from sources such as dirt roads, agricultural fields,...
thumbnail
USFWS Landscape Conservation Cooperatives (LCCs) throughout the Mississippi River Basin (MRB) have identified high nutrient runoff, a major contributor to Gulf hypoxia, and declines in wildlife populations (especially grassland and riparian birds), as conservation challenges requiring collaborative action. This project aimed to develop a spatial decision support system (DSS) to address these issues. The DSS was designed to identify MRB watersheds where application of conservation practices can (1) reduce nutrient export to the Gulf hypoxia zone and (2) enhance conservation for grassland and riparian birds, based on (3) identifying landowners willing and capable of implementing these practices. The DSS is expected...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2014, Bird Conservation, Birds, Birds, Birds, All tags...
thumbnail
The Rio Grande cutthroat trout is New Mexico’s state fish; but habitat loss and non-native trout invasions threaten the persistence of this fish throughout the remaining 12% of its historic range. Stakeholders, including state agencies, federal agencies, Tribal nations, Pueblos, and private groups are particularly concerned about the impact that non-native brown trout have on native cutthroat trout. This project will be the first to demonstrate how non-native brown trout negatively affect Rio Grande cutthroat trout populations. The project has two primary objectives: 1) compare the health and characteristics of native Rio Grande Cutthroat Trout in areas both with and without invasive brown trout in cold and warm...
thumbnail
Understanding the changes in the distribution and quantity of, and demand for, water resources in response to a changing climate is essential to planning for, and adapting to, future climatic conditions. In order to plan for future conditions and challenges, it is crucial that managers understand the limitations and uncertainties associated with the characterization of these changes when making management decisions. Changes in consumptive water use (water removed without return to a water resources system) will change streamflow, impacting downstream water users, their livelihoods, as well as aquatic ecosystems. Historical changes in available water may be attributed to changes in precipitation; but these changes...
thumbnail
Climate change is causing species to shift their phenology, or the timing of recurring life events such as migration and spawning, in variable and complex ways. This can potentially result in mismatches or asynchronies in food and habitat resources that negatively impact individual fitness, population dynamics, and ecosystem function. Numerous studies have evaluated phenological shifts in terrestrial species, particularly birds and plants, yet far fewer evaluations have been conducted for marine animals. This project sought to improve our understanding of shifts in the timing of seasonal migration, spawning or breeding, and biological development (i.e. life stages present, dominant) of coastal fishes and migratory...
thumbnail
In the dry southwestern United States, snowmelt plays a crucial role as a water source for people, vegetation, and wildlife. However, snow droughts significantly lower snow accumulations, disrupting these critical water supplies for local communities and ecosystems. Despite its large influence on land- and water-resource management, snow drought has only recently been properly defined and its historical distribution and effects on key natural resources are essentially unknown. To remedy this serious knowledge gap, project researchers are examining the causes, effects, and forecastability of snow drought to provide needed scientific information and guidance to planners and decision makers. The central goals of...
thumbnail
Surrounded by saltwater, Hawaiian communities depend on freshwater streams for consumption, irrigation, traditional Hawaiian practices, and habitat for native fish and other stream life. It is important to be able to predict how Hawaiʻi’s streams will be affected by changing rainfall patterns to enable sustainable management of critical freshwater resources. However, to date, limited data and the uncertain effects of climate change have hindered predictions of future streamflow. Through this project, scientists developed a model that provides a way to estimate future stream low flow (streamflow during a period of prolonged dryness) by categorizing streams based on their physical characteristics. While the model...
thumbnail
Currently, maintaining appropriate flows to support biological integrity is difficult for larger riverine ecosystems. Climate change, through increased temperature, reduced rainfall, and increased rainfall intensity, is expected to reduce water availability and exacerbate the maintenance of ecological flows in the Arkansas-Red River basin. Understanding the nexus among climate change effects on streamflow, water quality, and stream ecology for watersheds in the Arkansas-Red River Basin can be achieved using currently existing science and technology. This nexus approach will strengthen adaptive-management strategies that focus on shared ecosystem conservation watershed targets. This approach will provide natural-resource...
thumbnail
Salmon that spawn and rear in Southeast Alaska watersheds are critically important to the region’s economic vitality and cultural identity. An estimated 90% of rural households in Southeast Alaska use salmon. Environmental changes that compromise the ability of these streams to support salmon could have dramatic consequences for the region. In particular, there is concern that climate change could undermine the capacity of the region’s streams to support productive fisheries. As a result, regional stakeholders are interested in identifying some of the potential impacts of climate change on watersheds that support abundant salmon. These stakeholders include federal and state agencies (U.S. Fish and Wildlife Service,...
thumbnail
For thousands of years, Pacific lamprey and Pacific eulachon have been important traditional foods for Native American tribes of the Columbia River Basin and coastal areas of Oregon and Washington. These fish have large ranges – spending part of their lives in the ocean and part in freshwater streams – and they require specific environmental conditions to survive, migrate, and reproduce. For these reasons, Pacific lamprey and Pacific eulachon are likely threatened by a variety of climate change impacts to both their ocean and freshwater habitats. However, to date, little research has explored these impacts, despite the importance of these species to tribal communities. This project will evaluate the effects of...
thumbnail
The Colorado River is the dominant water source for the southwestern United States, crossing through seven states before reaching Mexico. The river supplies water to approximately 36 million people, irrigates nearly six million acres of farmland within and beyond the basin, and contributes an estimated 26 billion dollars each year to the region’s recreational economy. Yet the Colorado River’s water supply is already fully allocated, meaning that the economic and environmental health of the region is closely tied to the river’s streamflow. Climate projections for the Southwest show a future marked by chronic drought and substantial reductions in streamflow. The region has already been impacted by climate change,...
thumbnail
The Rio Grande provides drinking water for more than six million people, irrigation water for two million acres of land in the United States and Mexico, and supports riparian ecosystems that are home to endangered species like the ocelot and Rio Grande silvery minnow. Climate variability and anthropogenic activities continue to stress this already limited water resource. This project was developed in response to a request from a group of stakeholders who work in the Basin and represent federal, state and local agencies, private industry, farmers, ranchers, and NGOs. These stakeholders identified the need for a comprehensive data resource that spatially depicts where conservation activities are occurring on the ground....
thumbnail
Climate change, drought, habitat alterations, and increasing water demands are leaving less water available for streams of the Pacific Northwest and for fish like salmon. As water levels drop, some small streams become fragmented, transforming from a ribbon of continuous habitat into a series of isolated pools. Fragmented streams may pose a serious threat to salmon. For example, juveniles that become stranded in small pools are at increased risk to overheat, starve, or be consumed by predators. Healthy salmon populations can cope with fragmentation and recover from a bad drought-year. However, many salmon populations are endangered and face long-term drought. Land and resource managers are increasingly finding...


map background search result map search result map Improving Projections of Hydrology in the Pacific Northwest Projecting Future Streamflow in the Colorado River Basin Projecting the Future of Headwater Streams to Inform Management Decisions Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S. Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin Assessing Climate Change Impacts on Pacific Lamprey and Pacific Eulachon Science to Assess Future Conservation Practices for the Mississippi River Basin Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Modeling the Response of Hawaiʻi’s Streams to Future Rainfall Conditions Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species Understanding Sediment Transport to Coastal Waters and Coral Reefs in West Maui Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Evaluating the Effectiveness of Assisted Migration and Fish Rescue Programs Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Susceptibility of Rio Grande Cutthroat Trout to Displacement by Non-Native Brown Trout and Implications for Future Management Mapping Conservation Management Efforts to Increase Coordination in the Rio Grande Basin The Potential Impacts of Climate Change on River Food Webs and Salmon Productivity in Southeast Alaska Modeling the Response of Hawaiʻi’s Streams to Future Rainfall Conditions Moving from Awareness to Action: Informing Climate Change Vulnerability Assessments and Adaptation Planning for Idaho and Montana National Forests Evaluating the Effectiveness of Assisted Migration and Fish Rescue Programs Supporting Climate-Resilient Design for In-Stream Restoration and Fish Passage Projects Examining the Influence of Temperature and Precipitation on Colorado River Water Resources: Reconstructing the Past to Understand the Future Implications of Future Shifts in Migration, Spawning, and Other Life Events of Coastal Fish and Wildlife Species The Potential Impacts of Climate Change on River Food Webs and Salmon Productivity in Southeast Alaska Understanding the Nexus between Climate, Streamflow, Water Quality, and Ecology in the Arkansas-Red River Basin Integrated Scenarios Tools: Improving the Accessibility of the Integrated Scenarios Data Projecting Future Streamflow in the Colorado River Basin Assessing Climate Change Impacts on Pacific Lamprey and Pacific Eulachon Susceptibility of Rio Grande Cutthroat Trout to Displacement by Non-Native Brown Trout and Implications for Future Management Mapping Conservation Management Efforts to Increase Coordination in the Rio Grande Basin Improving Projections of Hydrology in the Pacific Northwest Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests Assessing the Drivers of Water Availability for Historic and Future Conditions in the South Central U.S. Enabling Climate-Informed Planning and Decisions about Species of Conservation Concern in the North Central Region: Phase 2 Projecting the Future of Headwater Streams to Inform Management Decisions Science to Assess Future Conservation Practices for the Mississippi River Basin