Skip to main content
Advanced Search

Filters: Tags: Sedgwick County (X) > Types: Map Service (X)

10 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...
thumbnail
Classified probability of suitable habitat for Black Tailed Prairie Dogs for each cell of raster. Classification is based on 4 probability cutoff levels with category 1 being low habitat suitability and category 4 being high habitat suitability. Categorized probability data is created from fitting a global third-order model to county level raster data. For details on model fitting and data used to produce categorized probability raster see report. https://www.fws.gov/science/catalog
thumbnail
Classified probability of suitable habitat for Black Tailed Prairie Dogs for each cell of raster. Classification is based on 4 probability cutoff levels with category 1 being low habitat suitability and category 4 being high habitat suitability. Categorized probability data is created from fitting a global second-order model to county level raster data. For details on model fitting and data used to produce categorized probability raster see report. https://www.fws.gov/science/catalog
thumbnail
Probability of suitable habitat for Black Tailed Prairie Dogs for each cell of raster. Probability is measured from 0 to 1 with 0 being low habitat suitability and 1 being high suitability. Probability data is created from fitting a global second-order model to county level raster data. For details on model fitting and data used to produce probability raster see report. https://www.fws.gov/science/catalog
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...
thumbnail
Probability of suitable habitat for Black Tailed Prairie Dogs for each cell of raster. Probability is measured from 0 to 1 with 0 being low habitat suitability and 1 being high suitability. Probability data is created from fitting a global third-order model to county level raster data. For details on model fitting and data used to produce probability raster see report. https://www.fws.gov/science/catalog
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...


    map background search result map search result map Sedgwick CO Third Order Resource Selection Function Sedgwick CO Third Order Categorized Resource Selection Function Sedgwick CO Second Order Resource Selection Function Sedgwick CO Second Order Categorized Resource Selection Function Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow point measurements shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep point measurements shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow contours shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep contours shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow raster) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep raster) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep contours shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow contours shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep point measurements shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep raster) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow point measurements shapefile) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow raster) Sedgwick CO Third Order Resource Selection Function Sedgwick CO Third Order Categorized Resource Selection Function Sedgwick CO Second Order Resource Selection Function Sedgwick CO Second Order Categorized Resource Selection Function