Skip to main content
Advanced Search

Filters: Tags: Sediment (X) > Types: Downloadable (X)

48 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset contains geochemical data for unconsolidated sediments (stream sediments, lake sediments, etc.) collected by U.S. Geological Survey (USGS) personnel and analyzed in the analytical laboratories of the Geologic Division of the USGS. These data represent analyses of sediment samples collected in support of various USGS programs. The data were originally entered into the in-house Rock Analysis Storage System (RASS) database which was used by the Geologic Division from the early-1970's through the late-1980's to archive geochemical data. An unpublished CD-ROM was developed in 1996 that contains the RASS data in GSSEARCH format. That CD was used to generate this data set.
thumbnail
A vented conductivity, temperature and depth sensor (CTD, InSitu Aqua Troll) was installed at site NR1 (N 47° 04’ 16.1”/W 122° 42’ 15.5”) and continuously measured water temperature, water depth, specific conductance, and salinity at 15-minute intervals from February 11, 2016 to July 18, 2016 (159 days). The sensor was replaced with a vented water-level logger (InSitu Level Troll) on July 19, 2016 and deployed until March 19, 2018 (608 days). The site is tidally influenced and located approximately 4.1 km upstream from the mouth of the Nisqually River and within the tidal prism. The elevation (NAVD88) of the top of the deployment pipe was surveyed by RTN-GPS. Tape-down measurements from the top of the pipe to the...
thumbnail
Problem The Tully Valley, located in southern Onondaga County has been the source of sediment and brackish water discharge to Onondaga Creek, a tributary to the Seneca and Oswego Rivers and eventually Lake Ontario. Information on the origin of the Tully Valley mudboils, their persistence, and the possible extent of their migration within the Tully Valley is needed to mitigate or remediate (1)the discharge of turbid water and fine-grained sediment from the mudboils, (2) land-surface subsidence caused by the removal of sediment from below the land surface, and (3) degradation of Onondaga Creek by turbidity, fine-sediment deposition, and chloride loading. Objectives To define the glacial stratigraphy and hydraulic-head...
thumbnail
This data release contains the analytical results and the evaluated source data files of a geospatial analysis for identifying areas in Alaska that may have potential for sediment-hosted Pb-Zn (lead-zinc) deposits. The spatial analysis is based on queries of statewide source datasets Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. The results in geodatabase format are in SedPbZn_Results_gdb.zip. The analytical results for sediment-hosted Pb-Zn deposits are in a polygon feature class which contains the points...
thumbnail
A vented conductivity, temperature and depth sensor (CTD, InSitu Aqua Troll) was installed at site NR3 (N 47° 05’ 12”/W 122° 42’ 22”) and continuously measured water level, water temperature, specific conductance, and salinity at 15-minute intervals from February 12, 2016 to August 7, 2016 (177 days) and from October 7, 2016 to February 8, 2017 (124 days). This site is tidally influenced and located approximately 2.2 km upstream from the mouth of the Nisqually River. Elevation (NAVD88) of the deployment pipe was surveyed by RTN-GPS. Elevation of pipe plus distance to sensor is included in the offset. The offset needed to convert water depth to NAVD88 water surface elevation is -0.31 meters. . Water depth of the...
thumbnail
Natural and anthropogenic contaminants, pathogens, and viruses are found in soils and sediments throughout the United States. Enhanced dispersion and concentration of these environmental health stressors in coastal regions can result from sea level rise and storm-derived disturbances. The combination of existing environmental health stressors and those mobilized by natural or anthropogenic disasters could adversely impact the health and resilience of coastal communities and ecosystems. This dataset displays the exposure potential to environmental health stressors in the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. Exposure...
thumbnail
Background The North Atlantic Coastal Plain (NACP) covers a land area of approximately 34,000 mi 2 along the eastern seaboard of the United States from Long Island, N.Y., southward to the northern portion of North Carolina. This area is underlain by a thick wedge of sedimentary deposits that form a complex groundwater system in which the sands and gravels function as confined aquifers, and the silts and clays function as confining units. These confined aquifers of the NACP constitute a major source of water for public and domestic supply for the nearly 27 million people living in the region, as well as being important source of water for industrial and agricultural purposes. Increases in population and changes...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Cooperative Water Program, Delaware, Focused Assessments, Focused Assessments, Focused Assessments, All tags...
thumbnail
This data release contains coastal wetland synthesis products for the geographic region of eastern Long Island, New York, including the north and south forks, Gardiners Island, and Fishers Island. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, mean tidal range, and shoreline change rate are calculated for smaller units delineated from a Digital Elevation Model, providing the spatial variability of physical factors that influence wetland health. Through scientific efforts initiated with the Hurricane Sandy Science Plan, the U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of...
thumbnail
An upward-looking acoustic Doppler velocity meter (ADVM; Sontek XR, 1.5 MHz) was deployed in McAllister Creek at site MC2 (N 47° 05’ 43”/W 122° 43’ 38”) and continuously recorded water velocity, temperature and water level at 5-minute intervals from September 26, 2016 to October 14, 2016 (18 days), and at 15-minute intervals from December 2, 2016 to May 25, 2017 (174 days) except for the period of March 6 – 11, 2017 when the sensor was removed for maintenance and battery replacement. The site is tidally influenced and located approximately 0.7 km upstream from the mouth of McAllister Creek. The measurement averaging interval for the ADVM was 60 s. The blanking distance was set at 0.5 m and the cell end was set at...
thumbnail
This portion of the data release contains information on cores that were collected by the U.S. Geological Survey in Kahana Valley, O'ahu, Hawaii in 2015 and 2017. Sites were cored in order to describe wetland stratigraphy and to identify potential tsunami deposits. These cores contain mud, peat, fluvial sands, and marine carbonate sands, reflecting deposition in a variety of coastal environments. PDF files describe twenty-four (24) gouge and ‘Russian’ cores (hand held, side-filling peat augers) that were collected and described in the field. Cores collected in 2017 were described using the Troels-Smith sediment classification scheme (Troels-Smith, 1955; Nelson, 2015). Another pdf file (Kahana_cores_legend.pdf) contains...
thumbnail
This portion of the data release contains information on vibracores that were collected by the U.S. Geological Survey in Pololu Valley, Island of Hawai'i in 2014. Five sites were cored in order to describe wetland stratigraphy and to identify potential tsunami deposits. These vibracores contain mud, peat, fluvial sands, and marine volcanic sands, reflecting deposition in a variety of coastal environments. Two (2) pdf files (VC1.pdf, VC2.pdf) describe vibracores that were split, imaged by a line-scanner camera, scanned to generate computed tomagraphic (CT) images, and visually described. A detailed description of the upper 150 cm of VC1 using the Troels-Smith sediment classification scheme (Troels-Smith, 1955; Nelson,...
thumbnail
Background Heavy metals, phosphorus, and organic contaminants in water and sediments of the lower Genesee River, resulted in the designation of fourteen beneficial uses as impaired in the Rochester Embayment Area of Concern (AOC). The benthic macroinvertebrate community or “benthos” Beneficial Use Impairment (BUI) was designated as degraded in the Genesee River because the New York State Department of Environmental Conservation (NYSDEC) impairment metrics generally identified slight to moderate impacts through the 1990s and 2000s. Accumulation of “sediments on more suitable substrates” and “contaminants in sediment of the Genesee River related to past municipal and industrial waste-water treatment plant discharges...
thumbnail
Problem Sediment transport is a serious concern in the upper Esopus Creek watershed. The creek is a well-documented source of sediment and turbidity to the Ashokan Reservoir, which is part of the New York City water supply system. During the last 2 decades there has been a series of stream stabilization and sediment reduction projects completed in the upper Esopus Creek watershed intended to reduce the suspended sediment load and turbidity levels delivered to the reservoir. During the last 7 years there has been a concerted effort to measure the effect of these projects on turbidity and suspended sediment. There is currently a large, long-term turbidity and suspended sediment study underway within the upper Esopus...
thumbnail
Problem Tribal Lands of the Shinnecock Nation Tribal community were inundated during Hurricane Sandy’s storm tide, resulting in detrimental effects on the Tribal Land’s natural resources. The existing science being used to inform decisions on remediation is biased toward activities are necessarily focused on the immediate aftermath of storms An assessment of the sources of contaminants that may have been introduced from inundation is needed to provide a context with which the Tribal community can better understand how to prioritize and manage the sources and minimize risk. Objectives This project will evaluate key human- and ecological-health concerns related to transport and persistence of...
Categories: Data, Project; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Climate Impacts, Climate Impacts, Climate impacts, Contaminants, Emerging, Contaminants, Emerging, All tags...
thumbnail
Introduction The upper Esopus Creek watershed is located in the eastern Catskill Mountains of New York State and covers 497 km2 from Slide Mountain, the highest peak in the Catskills at 1,274 m, to the Ashokan Reservoir at 193 m elevation (fig. 1). Suspended sediment and turbidity are primary water quality concerns in the Ashokan Reservoir watershed, part of the New York City Catskill-Delaware water supply system that supplies more than 10 million people a day with clean drinking water. Stream corridor assessments of tributaries to the Upper Esopus Creek by Ulster County Soil and Water Conservation District, New York City Department of Environmental Protection, and State University of New York at New Paltz summer...
thumbnail
An upward-looking acoustic Doppler velocity meter (ADVM, SonTek SW, 3.0 MHz) located in a tidal channel of the Nisqually River Delta at site D2 (N 47d 05’ 37.2”/W 122d 42’ 56.4”) measured water level and current velocity at 15-minute intervals from February 16 to July 20, 2017 (104 of 154 days, accounting for missing periods). This site is in a tidal channel at a levee breach where flow is tidally influenced. The water depth of the sensor ranged from 0.04 to 4.63 m and may have been lower during periods of extreme low tide. The elevation (NAVD88) of the ADVM sensor was surveyed by RTN-GPS. The offset to convert all water depth time-series data to water surface elevation (NAVD88) is 0.06 meters. Instrument temperature...
thumbnail
A vented water-level logger was installed at site MC1 (N 47° 05’ 12.2”/W 122° 43’ 36.8”) and continuously measured water depth and temperature at 15-minute intervals from Nov 22, 2016 to Sept 6, 2017 (288 days). This site is tidally influenced and located 1.12 km from the mouth of McAllister Creek. Elevation (NAVD88) of the water surface above the sensor was surveyed by RTN-GPS. The offset to convert all water depth time-series data to water surface elevation (NAVD88) is -1.052 m. Water depth ranged from 0.69 to 4.88 m. Temperature ranged from 2.8 to 22.5 degrees C.
thumbnail
Monitoring shoreline change is of interest in many coastal areas because it enables quantification of land loss over time. Evolution of shoreline position is determined by the balance between erosion and accretion along the coast. In the case of salt marshes, erosion along the water boundary causes a loss of ecosystem services, such as habitat provision, carbon storage, and wave attenuation. In terms of vulnerability, higher shoreline erosion rates indicate higher vulnerability. This dataset displays shoreline change rates at the Edwin B. Forsythe National Wildlife Refuge (EBFNWR), which spans over Great Bay, Little Egg Harbor, and Barnegat Bay in New Jersey, USA. Shoreline change rates are based on...
thumbnail
Background Past water-quality issues in the St. Lawrence River at Massena, NY resulted in a determination that selected beneficial uses were impaired in a surrounding Area of Concern (AOC) and on the Canadian side of the international boundary (Cornwall, Ontario). The benthic macroinvertebrate community or “benthos” Beneficial Use Impairment (BUI) was designated degraded because impairment metrics were unavailable or inconclusive. Recent sampling efforts by New York State Department of Environmental Conservation (NYSDEC) as part of their Rotating Integrated Basin Studies (RIBS) program indicate that macroinvertebrate communities in some sections of the St. Lawrence River and its tributaries in the Massena AOC are...
thumbnail
Background : Contaminated bed sediments in much of the Buffalo River AOC (Figure 1A, 1B) were removed (dredged) between 2011 and 2015. Plans to monitor and assess the effectiveness of this management action on 8 of 9 beneficial-use-impairments (BUI), included the benthic macroinvertebrate (benthos) BUI, were revised by the Buffalo Niagara Riverkeeper (Riverkeeper, 2014). Funds needed to implement various monitoring efforts proposed in this plan, however, were not available at that time. The USGS-New York Water Science Center (NYWSC) and the NYSDEC propose a collaborative study to evaluate multiple lines of evidence (toxicity of sediments and the condition of benthic macroinvertebrate communities) to determine...


map background search result map search result map Geochemistry of unconsolidated sediments in the US from the RASS database for Wyoming Effects of Stream Restoration and Bank Stabilization on Suspended Sediment in Tributaries to the Upper Esopus Creek Hydrogeology of the Tully Valley Mudboil Area, Southern Onondaga County, New York Sediment toxicity and status of benthic invertebrate communities in the St. Lawrence River and its tributaries within the Massena Area-of-Concern Sediment Toxicity and Condition of Benthic Invertebrate Communities in the Rochester Embayment Area-of-Concern Human- and Ecological-Health Concerns Related to Transport and Persistence of Contaminants on Shinnecock Nation Tribal Lands Groundwater Availability of the Northern Atlantic Coastal Plain Sediment toxicity and status of benthic macroinvertebrate communities in the remediated Buffalo River Area-of-Concern Exposure potential of saltmarsh units in Edwin B. Forsythe National Wildlife Refuge to environmental health stressors (polygon shapefile) Shoreline change rates in salt marsh units in Edwin B. Forsythe National Wildlife Refuge, New Jersey Water Data for Nisqually River at Site NR1 Water Data for Nisqually River at Site NR3 Water Data for Nisqually River Delta at Site D2 Water Data for McAllister Creek at Site MC1 Water Data for McAllister Creek at Site MC2 (ver. 1.1, December 2019) Vibracore photographs, computed tomography scans, and core-log descriptions from Pololu Valley, Island of Hawaii Core descriptions and sand bed thickness data from Kahana Valley, O'ahu, Hawai'i Upper Esopus Creek Tributary Bedload Pilot Study Rate of shoreline change of marsh units in eastern Long Island salt marsh complex, New York (ver. 2.0, March 2024) Data and results for GIS-based identification of areas that have resource potential for sediment-hosted Pb-Zn deposits in Alaska Water Data for Nisqually River Delta at Site D2 Water Data for McAllister Creek at Site MC2 (ver. 1.1, December 2019) Vibracore photographs, computed tomography scans, and core-log descriptions from Pololu Valley, Island of Hawaii Hydrogeology of the Tully Valley Mudboil Area, Southern Onondaga County, New York Core descriptions and sand bed thickness data from Kahana Valley, O'ahu, Hawai'i Water Data for Nisqually River at Site NR3 Human- and Ecological-Health Concerns Related to Transport and Persistence of Contaminants on Shinnecock Nation Tribal Lands Sediment toxicity and status of benthic macroinvertebrate communities in the remediated Buffalo River Area-of-Concern Sediment toxicity and status of benthic invertebrate communities in the St. Lawrence River and its tributaries within the Massena Area-of-Concern Sediment Toxicity and Condition of Benthic Invertebrate Communities in the Rochester Embayment Area-of-Concern Effects of Stream Restoration and Bank Stabilization on Suspended Sediment in Tributaries to the Upper Esopus Creek Upper Esopus Creek Tributary Bedload Pilot Study Geochemistry of unconsolidated sediments in the US from the RASS database for Wyoming Groundwater Availability of the Northern Atlantic Coastal Plain Data and results for GIS-based identification of areas that have resource potential for sediment-hosted Pb-Zn deposits in Alaska