Skip to main content
Advanced Search

Filters: Tags: Simulation (X) > Types: Journal Citation (X)

7 results (67ms)   

View Results as: JSON ATOM CSV
Researchers representing each of the Colorado River Basin states as well as the Secretary of the Interior were presented with an interactive computer simulation of a progressively increasing drought and were given the collective opportunity to change the ways in which basin-wide and within-state water management were conducted. The purpose of this ?gaming? exercise was to identify rules for managing the Colorado River which are effective in preventing drought-caused damages to basin water users. This water management game was conducted three times, varying the collective choice roles for management of the river yet staying substantially within the current institution for management of the Colorado River known as...
The impacts of a severe sustained drought on Colorado River system water resources were investigated by simulating the physical and institutional constraints within the Colorado River Basin and testing the response of the system to different hydrologic scenarios. Simulations using Hydrosphere's Colorado River Model compared a 38-year severe sustained drought derived from 500 years of reconstructed streamfiows for the Colorado River basin with a 38-year streamfiow trace extracted from the recent historic record. The impacts of the severe drought on streamfiows, water allocation, storage, hydropower generation, and salinity were assessed. Estimated deliveries to consumptive uses in the Upper Basin states of Colorado,...
Water management agencies seek the next generation of modeling tools for planning and operating river basins. Previous site-specific models such as U,S. Bureau of Reclamation's (USBR) Colorado River Simulation System and Tennessee Valley Authority's (TVA) Daily Scheduling Model have become obsolete; however, new models are difficult and expensive to develop and maintain. Previous generalized river basin modeling tools are limited in their ability to represent diverse physical system and operating policy details for a wide range of applications. RiverWard (TM), a new generalized river basin modeling tool, provides a construction kit for developing and running detailed, site-specific models without the need to develop...
We evaluated the effects of institutional responses developed for coping with a severe sustained drought (SSD) in the Colorado River Basin on selected system variables using a SSD inflow hydrology derived from the drought which occurred in the Colorado River basin from 1579-1616. Institutional responses considered are reverse equalization, salinity reduction, minimum flow requirements, and temporary suspension of the delivery obligation of the Colorado River Compact. Selected system variables (reservoir contents, streamflows, consumptive uses, salinity, and power generation) from scenarios incorporating the drought-coping responses were compared to those from Baseline conditions using the current operating criteria....
The Price River is a significant contributor of salt to the Colorado River. Relatively pristine waters leaving the upper elevations of the basin degenerate into highly saline waters entering the Green River. The primary reason for this deterioration is the contact of the water with the Mancos shale, a marine deposit underlying most of the central basin. This paper presents the structure of an evolving model of the salt pick-up and transport processes in the Price River basin. The initial purpose of the model is to aid in the identification of the natural and man-modified hydro-salinity-sediment system of the basin, based on data collection and analysis in the field and the laboratory. This identification procedure...
In the shortgrass steppe region of North America there is a controversy about the ability of the dominant species to recruit from seedlings. The prevailing view is that Bouteloua gracilis is incapable of recruitment from seedlings in areas receiving <380 mm of annual precipitation. A common explanation for this situation is that environmental conditions permitting seedling establishment are infrequent. To assess the frequency of environmental conditions appropriate for the recruitment of B. gracilis we used a soil water simulation model and long-term climatic data in conjunction with detailed information about the ecophysiological requirements for seed germination and growth of seminal and adventitious roots. We...
This paper describes how a hydrologic model proved to be a valuable tool to help interested parties understand impacts to four threatened and endangered fish species in the Upper Colorado River. In 1994, the Ute Water Conservancy District initiated permitting and design of the Plateau Creek pipeline replacement. The project was considered a major Federal action and therefore subject to the National Environmental Policy Act. Under Section 7 of the Endangered Species Act, the U.S. Fish and Wildlife Service (USFWS) entered the process to develop a Biological Opinion (BO) and determined that the project could potentially impact the endangered fish in the 15-mile reach of the Colorado River. The Section 7 consultation...