Skip to main content
Advanced Search

Filters: Tags: Soil erosion (X) > Types: Journal Citation (X)

4 results (8ms)   

View Results as: JSON ATOM CSV
Desert grasslands, which are very sensitive to external drivers like climate change, are areas affected by rapid land degradation processes. In many regions of the world the common form of land degradation involves the rapid encroachment of woody plants into desert grasslands. This process, thought to be irreversible and sustained by biophysical feedbacks of global desertification, results in the heterogeneous distribution of vegetation and soil resources. Most of these shrub-grass transition systems at the desert margins are prone to disturbances such as fires, which affect the interactions between ecological, hydrological, and land surface processes. Here we investigate the effect of prescribed fires on the landscape...
Cyanobacteria are known to form a crust on soil surfaces holding soil particles together and thereby offering resistance to erosion. A controlled experiment was carried out to throw light on this issue. The experiment consisted of subjecting erosion cups filled with soil to artificial rainfall in the laboratory. Three sets of erosion cups, each set consisting of six, were used. One set consisted of soil with inoculated cyanobacteria and the second set consisted of soil with naturally colonized cyanobacteria, both over a period of about 8 months. The third set consisted of soil with no bacterial growth. The results indicate that the soil erosion cups with the inoculated cyanobacterial crust had at least one order...
Wind is a persistent force in arid and semiarid lands. Microphytic crusts have been attributed with the ability to reduce wind erosion because of soil binding qualities. The purpose of this research was to determine if microphytic crusts contribute to soil stability in an arid land setting. Threshold friction velocity is the wind speed necessary for the initiation of soil erosion and, thus, is a measure of soil surface stability. A portable wind tunnel was used to determine threshold friction velocity on soil surfaces consisting of microphytic crusts living and undisturbed (control), chemically killed microphytic crusts but otherwise undisturbed (chemically killed), and microphytic crusts mechanically removed from...
thumbnail
Recently disturbed and ‘control’ (i.e. less recently disturbed) soils in the Mojave Desert were compared for their vulnerability to wind erosion, using a wind tunnel, before and after being experimentally trampled. Before trampling, control sites had greater cyanobacterial biomass, soil surface stability, threshold friction velocities (TFV; i.e. the wind speed required to move soil particles), and sediment yield than sites that had been more recently disturbed by military manoeuvres. After trampling, all sites showed a large drop in TFVs and a concomitant increase in sediment yield. Simple correlation analyses showed that the decline in TFVs and the rise in sediment yield were significantly related to cyanobacterial...


    map background search result map search result map Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management