Skip to main content
Advanced Search

Filters: Tags: South Central CASC (X) > Categories: Publication (X)

64 results (16ms)   

Filters
Date Range
Extensions
Types
Contacts
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from http://link.springer.com/article/10.1007/s11069-016-2376-z): Drought is among the most insidious types of natural disasters and can have devastating economic and human health impacts. This research analyzes the relationship between two readily accessible drought indices—the Palmer Drought Severity Index (PDSI) and Palmer Hydrologic Drought Index (PHDI)—and the damage incurred by such droughts in terms of monetary loss, over the 1975–2010 time period on monthly basis, for five states in the south-central USA. Because drought damage in the Spatial Hazards Events and Losses Database for the United States (SHELDUS™) is reported at the county level, statistical downscaling techniques were used to estimate...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/gdj3.47/abstract): Two datasets of soil temperature observations collected at Norman, Oklahoma, USA, were analysed to study horizontal and vertical variability in their observations. The first dataset comprised 15-min resolution soil temperature observations from 20 September 2011 to 18 November 2013 in seven plots across a 10-m transect. In each plot, sensors were located at depths of 5, 10, and 30 cm. All seven plots observed fairly consistent maximum soil temperature observations during the spring, fall, and winter months. Starting in late May, the observed spread in soil temperatures across the 10-m transect increased significantly until August when the...
Abstract (From http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-15-0062.1): Over mountainous terrain, ground weather radars face limitations in monitoring surface precipitation as they are affected by radar beam blockages along with the range-dependent biases due to beam broadening and increase in altitude with range. These issues are compounded by precipitation structures that are relatively shallow and experience growth at low levels due to orographic enhancement. To improve surface precipitation estimation, researchers at the University of Oklahoma have demonstrated the benefits of integrating the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) products into the ground-based NEXRAD rainfall...
Abstract (from http://link.springer.com/article/10.1007/s11258-016-0568-y): Resprouting is a key functional trait for species in disturbance prone environments. In many semi-arid environments, woody plants face both fire and drought as recurring disturbances. Past work has demonstrated that oaks inhabiting sky-island forests of the northern Sierra Madre Oriental have differing microhabitat preferences and heavy stem dieback occured during the historic 2011 drought indicating potential xylem failure. These oak species, representing two sections within the genus, are all post-fire resprouters: they can resprout from underground storage organs when fire kills above ground tissue. Resprouts provide an opportunity to...
Abstract (from Wiley): An estimate of a river's natural flow regime is useful for water resource planning and ecosystem rehabilitation by providing insight into the predisturbance form and function of a river. The natural flow regime of most rivers has been perturbed by development during the 20th century and in some cases, before stream gaging began. The temporal resolution of natural flows estimated using traditional methods is typically not sufficient to evaluate cues that drive native ecosystem function. Additionally, these traditional methods are watershed specific and require large amounts of data to produce accurate results. We present a mass balance method that estimates natural flows at daily time step...
Abstract (from Natural Hazards): Drought indices are useful for quantifying drought severity and have shown mixed success as an indicator of drought damage and biophysical dryness. While spatial downscaling of drought indicators from the climate divisional level to the county level has been conducted successfully in previous work, little research to date has attempted to “upscale” remotely sensed biophysical indicators to match the downscaled drought indices. This upscaling is important because drought damage and indices are often reported at a coarser scale than the biophysical indicators provide. This research upscales National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer sensor-acquired...
The south-central U.S. exists in a zone of dramatic transition in terms of eco-climate system diversity. Ecosystems across much of the region rely on warm-season convective precipitation. These convective precipitation is subject to large uncertainties under climate change scenario, possibly leading to gradual or sudden changes in habitats, and ecosystems. The convective precipitation in this region, occurring on a range of time and space scales, is extremely challenging to predict in future climate scenario. In this project, we established a unique, cutting-edge, dynamic downscaling capability to address the challenge of predicting precipitation in the south-central U.S. in current and future climate scenarios....
Abstract (from http://link.springer.com/article/10.1007/s10584-016-1598-0): Empirical statistical downscaling (ESD) methods seek to refine global climate model (GCM) outputs via processes that glean information from a combination of observations and GCM simulations. They aim to create value-added climate projections by reducing biases and adding finer spatial detail. Analysis techniques, such as cross-validation, allow assessments of how well ESD methods meet these goals during observational periods. However, the extent to which an ESD method’s skill might differ when applied to future climate projections cannot be assessed readily in the same manner. Here we present a “perfect model” experimental design that quantifies...
Abstract (from http://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001282): A novel multisite cascading calibration (MSCC) approach using the shuffled complex evolution–University of Arizona (SCE-UA) optimization method, developed at the University of Arizona, was employed to calibrate the variable infiltration capacity (VIC) model in the Red River Basin. Model simulations were conducted at 35 nested gauging stations. Compared with simulated results using a priori parameters, single-site calibration can improve VIC model performance at specific calibration sites; however, improvement is still limited in upstream locations. The newly developed MSCC approach overcomes this limitation. Simulations using MSCC...
Abstract (from ScienceDirect): The Land Change Monitoring, Assessment, and Projection (LCMAP) initiative uses temporally dense Landsat data and time series analyses to characterize landscape change in the United States from 1985 to present. LCMAP will be used to explain how past, present, and future landscape change affects society and natural systems. Here, we describe a modeling framework for producing high-resolution (spatial and thematic) landscape projections at a national scale, using a unique parcel-based modeling framework. The methodology was tested by modeling 11 land use scenarios and 3 climate realizations for the U.S. Great Plains. Results demonstrate 1) an ability to balance competing land-use demands...
Volodymyr V. Mihunov, Nina S.N. Lam, Robert V. Rohli, Lei Zou, 2019, Emerging disparities in community resilience to drought hazard in south-central United States, International Journal of Disaster Risk Reduction.
In 2015, the Red River Basin experienced the tail end of a severe drought followed by exceptional flooding, both of which cause impacts to industry, agriculture, tourism and the environment. Scientists, water managers and other stakeholders are interested in knowing what is in store for the future of the Red River Basin. Researchers at the University of Oklahoma and the Choctaw and Chickasaw Nations developed projections of future hydrology for the Red River Basin under possible future climate conditions. A methodology was developed for using current state of the art Global Climate Models (GCM) and applying them on a scale suitable for hydrologic models, ultimately making the information useful to water managers...
We brought together expertise in the social and communication sciences from targeted academic institutions, particularly experts and scholars who are affiliated with the nation’s Climate Science Centers, by means of an invited workshop. The purpose of this effort is to bring together such a group but also to focus experts in the nation’s Climate Science Centers on how these Centers’ affiliates can more effectively communicate the science of this important but often misunderstood problem and meaningfully inform effective policy in each region.
While we collect and monitor soil temperatures within natural and managed ecosystems across the Southern High Plains (SHP), we do not have a clear understanding of how soil temperature parameters are linked to ecosystem services, soil health and sustainability under increasing climate variability and increasing drought severity. Understanding how management decisions will either create positive or negative feedback loops with respect to soil temperature dynamics may be critical for developing sound conservation and soil management practices. As much of the SHP is privately owned and is managed either under intensive row cropping systems, any drought mitigation efforts and practices that influence and promote soil...