Skip to main content
Advanced Search

Filters: Tags: Southwest CSC (X) > Types: OGC WMS Service (X)

3 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This project used species distribution modeling to assess the risk to habitat change under various climate change scenarios for rare plants. To predict the response of rare plant species to climate change, the project modeled the current distribution of the species using climate and environmental data (e.g., soils, disturbance, land-use), use these models to predict the species distribution given climate change, calculate current and future range size, calculate the amount of overlap of predicted future distribution with current distribution, and assess where barriers and protected areas are located with reference to the change in species distribution. Given the results of the distribution modeling, each species...
thumbnail
Phase 1 & 2 (2010, 2012): This project developed a sampling design and monitoring protocol for wintering shorebirds in the Central Valley and in the San Francisco Bay Estuary and develop an LCC-specific online shorebird monitoring portal publicly available at the California Avian Data Center. The three objectives in Phase II of this project are: 1) Complete the shorebird monitoring plan for the CA LCC by developing a sampling design and monitoring protocol for wintering shorebirds in coastal southern California and northern Mexico. 2) Develop models to evaluate the influence of habitat factors from multiple spatial scales on shorebird use of San Francisco Bay and managed wetlands in the Sacramento Valley, as a model...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2010, 2011, 2013, Academics & scientific researchers, Academics & scientific researchers, All tags...
thumbnail
The complex mountain and valley chains of the Southwest exert a strong influence on precipitation and wind patterns. Atmospheric rivers deliver some of the most extreme precipitation events to west-southwest-facing slopes of the mountains where strong gusty downslope winds can also spread wildfires. Climate change is making the southwest warmer and dryer resulting in more fire-prone vegetation and more frequent and extreme atmospheric rivers. Understanding this changing system is critical for managing water resources and wildfire in the region. This project will study how climate change is impacting precipitation and winds to create fire weather and drive fire spread on heavily vegetated slopes of coastal mountains....


    map background search result map search result map Assessing and Mapping Rare Plant Species Vulnerability to Climate Change A Monitoring Protocol to Assess Wintering Shorebird Population Trends How do Atmospheric Rivers and Downslope Winds Affect Wildfire Risk and Water Resources in the Arid Southwest? A Monitoring Protocol to Assess Wintering Shorebird Population Trends Assessing and Mapping Rare Plant Species Vulnerability to Climate Change How do Atmospheric Rivers and Downslope Winds Affect Wildfire Risk and Water Resources in the Arid Southwest?