Skip to main content
Advanced Search

Filters: Tags: Species distribution model (X)

325 results (88ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
CBI's expert model for Palmer's jackass clover (Wislizenia refracta ssp. palmeri) includes areas with "North American warm desert dunes and sand flats" vegetation, sandy soils (porosity of < 0.4), and elevations under 150 meters, in ecoregion subsection 322Bc.
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
The Nature Conservancy (TNC) has derived climate suitability forecasts for most species of trees and shrubs considered to be ecological dominants of terrestrial Californian habitat types. Our plant projections are compiled as decision support tools to help Conservancy project staff, as well as our external partners, develop the necessary plans, priorities and strategies to successfully adapt to uncertain changes in future climate. In the recently completed Southern Sierra Partnership's 2010 Climate-Adapted Conservation Plan for the Southern Sierra Nevada and Tehachapi Mountains, species and habitat forecasts shown here informed the development of a regional conservation design that explicitly incorporates long-term...
thumbnail
Predicted probability of fisher winter occurrence created with Maxent (Phillips et al. 2006) using fisher detections (N = 33, December – April, spanning 1995 – 2011) and eight predictor variables: mean winter (January – March) precipitation, mean winter (January – March) minimum temperature, mean fraction of vegetation carbon burned, mean understory index (fraction of grass vegetation carbon in forest), mean fraction of total forest carbon in coarse wood carbon, mean forest carbon (g C m2), mean fraction of vegetation carbon in forest, and modal vegetation class. Predictor variables had a grid cell size of 4 km by 4 km, vegetation variables were simulated by the MC1 dynamic global vegetation model (Bachelet et al....
thumbnail
Predicted probability of marten year-round occurrence derived from future (2076-2095) climate projections and vegetation simulations. Projected marten distribution was created with Maxent (Phillips et al. 2006) using marten detections (N = 302, spanning 1990 – 2011) and nine predictor variables: mean winter (January – March) precipitation, mean amount of snow on the ground in March, mean understory index (fraction of grass vegetation carbon in forest), mean fraction of total forest carbon in coarse wood carbon, average maximum tree LAI, mean fraction of vegetation carbon burned, mean forest carbon (g C m2), mean fraction of vegetation carbon in forest, and modal vegetation class. Future climate drivers were...
thumbnail
Here we present the maps probable suitable habitat of 26 of 43 rare plants in the California desert. The multispecies map of probable suitable habitat combines data from all 26 species for which probable suitable habitat was mapped and indicates the number of species for which probable suitable habitat is predicted at each location. Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions...
thumbnail
Predicted probability of marten year-round occurrence derived from future (2046-2065) climate projections and vegetation simulations. Projected marten distribution was created with Maxent (Phillips et al. 2006) using marten detections (N = 302, spanning 1990 – 2011) and nine predictor variables: mean winter (January – March) precipitation, mean amount of snow on the ground in March, mean understory index (fraction of grass vegetation carbon in forest), mean fraction of total forest carbon in coarse wood carbon, average maximum tree LAI, mean fraction of vegetation carbon burned, mean forest carbon (g C m2), mean fraction of vegetation carbon in forest, and modal vegetation class. Future climate drivers were...
Here we present the map of potential suitable habitat for San Bernardino milk-vetch (Astragalus bernardinus). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit...
Here we present the map of potential suitable habitat for Palmer’s mariposa lily (Calochortus palmeri var. palmeri). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit...
Here we present the map of potential suitable habitat for White-margined beardtongue (Penstemon albomarginatus). The data indicate both how many models predicted each location to be potentially suitable for the species and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. These data are intended to be used only to target future plant surveys in areas where new occurrences are most likely to benefit...
Here we present the map of probable suitable habitat for Tehachapi monardella (Monardella linoides ssp. Oblonga). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and...
Here we present the map of probable suitable habitat for White-margined beardtongue (Penstemon albomarginatus). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other...
Here we present the map of probable suitable habitat for Desert cymopterus (Cymopterus deserticola). The data indicate both how many models predicted each location to be suitable for the species, and the average standardized habitat suitability score for each location.Data are presented at a spatial resolution of 10 m pixels, which was required to harmonize the original model inputs. However, maps of suitable habitat should be used at a resolution no smaller than 360 m (i.e., 36 pixels x 36 pixels), which corresponds with the resolution of the coarsest model input. This product can be used to inform future conservation, planning, and management actions in the California desert. Complete methods and other additional...


map background search result map search result map Palmer's jackass clover - Species Distribution Model, DRECP Predicted probability of marten year-round occurrence, 2076-2095, MIROC A2, 4 km resolution Predicted probability of marten year-round occurrence, 2046-2065, Hadley CM3 A2, 4 km resolution Predicted probability of fisher occurrence in winter (December – April), 1986-2005, 4 km resolution Warm, dry scenario forecast of climate suitability for foothill pine (Pinus sabiniana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, dry scenario forecast of climate suitability for ponderosa pine (Pinus ponderosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for purple mountainheath (Phyllodoce breweri) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Ensemble forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for California buckeye (Aesculus californica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, dry scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Probable Suitable Habitat Maps For 26 of 43 Rare Plants In The California Desert Palmer's jackass clover - Species Distribution Model, DRECP Warm, dry scenario forecast of climate suitability for foothill pine (Pinus sabiniana) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Hot, dry scenario forecast of climate suitability for ponderosa pine (Pinus ponderosa) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for purple mountainheath (Phyllodoce breweri) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Hot, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2  projections Warm, dry scenario forecast of climate suitability for chaparral whitethorn (Ceanothus leucodermis) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MRI-CGCM2.3.2 A2  projections Ensemble forecast of climate suitability for mountain mahogany (Cercocarpus betuloides) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for California buckeye (Aesculus californica) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Ensemble forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon multiple (n=11) downscaled 2045-2065 A2 GCM projections Hot, dry scenario forecast of climate suitability for white fir (Abies concolor) in the southern Sierra Nevada and Tehachapi Mountains (California, USA) based upon downscaled 2045-2065 MIROC3.2 A2 projections Probable Suitable Habitat Maps For 26 of 43 Rare Plants In The California Desert Predicted probability of marten year-round occurrence, 2076-2095, MIROC A2, 4 km resolution Predicted probability of marten year-round occurrence, 2046-2065, Hadley CM3 A2, 4 km resolution Predicted probability of fisher occurrence in winter (December – April), 1986-2005, 4 km resolution