Skip to main content
Advanced Search

Filters: Tags: Streamflow (X) > Types: Map Service (X)

85 results (32ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Alabama, Alaska, All 50 states, Arizona, Arkansas, All tags...
thumbnail
This dataset contains raster grids of water surface elevation for 15 modeled water-surface profiles at 5 flood frequencies (50- , 10,- 2- , 1- , and 0.2-percent annual exceedance probabilities, or 2- , 10- , 50- , 100- , and 500-year recurrence intervals) and 3 lake levels (representing average conditions, a 2-year-high condition, and a 100-year-high condition).
thumbnail
Background / Problem – The City of Ithaca, Tompkins County, N.Y., is in the process of developing a flood management plan for the streams that flow through the City. Flooding in the City is caused by a variety of distinct and sometimes interconnected reasons. Flooding often is a result of snowmelt and rain during the winter and spring. Slow ice-melt and breakup can lead to ice jams and subsequent flooding. Flash floods are produced by summer thunderstorms. All of these flood types are compounded by two factors: the storm-sewer system in the City and the elevation of Cayuga Lake. The storm sewers drain to the nearby streams at points below the tops of the streambanks. Because the streamward ends of the storm sewers...
thumbnail
Synopsis: This study analyzed the effects of vegetation change on hydrological fluctuations in the Columbia River basin over the last century using two land cover scenarios. The first scenario was a reconstruction of historical land cover vegetation, c. 1900. The second scenario was more recent land cover as estimated from remote sensing data for 1990. The results show that, hydrologically, the most important vegetation-related change has been a general tendency towards decreased vegetation maturity in the forested areas of the basin. This general trend represents a balance between the effects of logging and fire suppression. In those areas where forest maturity has been reduced as a result of logging, wintertime...
thumbnail
‚ÄčThe basis for these features is U.S. Geological Survey Scientific Investigations Report 2017-5024 Flood Inundation Mapping Data for Johnson Creek near Sycamore, Oregon. The domain of the HEC-RAS hydraulic model is a 12.9-mile reach of Johnson Creek from just upstream of SE 174th Avenue in Portland, Oregon, to its confluence with the Willamette River. Some of the hydraulics used in the model were taken from Federal Emergency Management Agency, 2010, Flood Insurance Study, City of Portland, Oregon, Multnomah, Clackamas, and Washington Counties, Volume 1 of 3, November 26, 2010. The Digital Elevation Model (DEM) utilized for the project was developed from lidar data flown in 2015 and provided by the Oregon Department...
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2016-5105 Flood-inundation maps for the Peckman River in the Townships of Verona, Cedar Grove, and Little Falls, and the Borough of Woodland Park, New Jersey, 2014.Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. Flood profiles were simulated...
thumbnail
This landing page contains peak-flow frequency analyses by the U.S. Geological Survey Wyoming - Montana Water Science Center. Sets of analyses are published as data releases which are child items to this landing page.
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for 11 selected streamgages in Jefferson County, Montana, that were based on methods described by Sando and McCarthy (2018).
thumbnail
Digital datasets were used to develop basin characteristics whose values are used in multiple regression equations and tested for the use in predicting flow-duration curves (FDCs) in ungaged areas of Indiana. Several basin characteristics are easily derived from StreamStats (https://streamstats.usgs.gov/ss/) basin delineations themselves, such as basin area. Other basin characteristics require ancillary datasets as input. The data provided through this data release are those data that have been collected, tested, and ultimately selected as a basis for FDC development. These include PRISM 3-Month Average Precipitation, Thickness and Coarseness of Quaternary Sediments, and Soil Available Water Capacity. There...
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2016-5105 Flood-inundation maps for the Peckman River in the Townships of Verona, Cedar Grove, and Little Falls, and the Borough of Woodland Park, New Jersey, 2014.Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. Flood profiles were simulated...
thumbnail
Our objective was to model the risk of becoming intermittent under drier climate conditions on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a conditional inference modeling approach to model the relation between intermittency status on gaged streams (115 gages) and selected mean and minimum flow metrics. We then projected intermittency status and if a stream...
thumbnail
A monthly water balance model (MWBM) was driven with precipitation and temperature using a station-based dataset for current conditions (1949 to 2010) and selected statistically-downscaled general circulation models (GCMs) for current and future conditions (1950 to 2099) across the conterminous United States (CONUS) using hydrologic response units from the Geospatial Fabric for National Hydrologic Modeling (Viger and Bock, 2014). Six MWBM output variables (actual evapotranspiration (AET), potential evapotranspiration (PET), runoff (RO), streamflow (STRM), soil moisture storage (SOIL), and snow water equivalent (SWE)) and the two MWBM input variables (atmospheric temperature (TAVE) and precipitation (PPT)) were summarized...
thumbnail
Digital flood-inundation maps for a 2.9-square-mile area of Ithaca, New York, were created in 2015–18 by the U.S. Geological Survey in cooperation with the City of Ithaca, New York, and the New York State Department of State. The flood-inundation maps depict estimates of the maximum areal extent and depth of flooding corresponding to selected flood frequencies for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek and selected water-surface elevations of Cayuga Lake. Flood profiles for the stream reaches were computed by combining a one-dimensional step-backwater model for the stream channels and a two-dimensional model for the overbank areas. The resulting hydraulic model was calibrated by using water-surface...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. This data release presents peak-flow frequency analyses for Elk Creek at Augusta, Montana, that were based on methods described by Sando and McCarthy (2018). Sando, S.K., and McCarthy, P.M., 2018, Methods for peak-flow frequency analysis and reporting for streamgages in or near Montana based...
thumbnail
The USGS Wyoming-Montana Water Science Center (WY–MT WSC) recently completed a report (Sando and McCarthy, 2018) documenting methods for peak-flow frequency analysis following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs) for selected streamgages operated by the WY–MT WSC. In association with the report, this data release presents peak-flow frequency analyses for 14 selected streamgages in the Beaverhead River and Clark Fork Basins that were based on methods described by Sando and McCarthy (2018). The results are presented in three child items: a child...
thumbnail
In the dry southwestern United States, snowmelt plays a crucial role as a water source for people, vegetation, and wildlife. However, snow droughts significantly lower snow accumulations, disrupting these critical water supplies for local communities and ecosystems. Despite its large influence on land- and water-resource management, snow drought has only recently been properly defined and its historical distribution and effects on key natural resources are essentially unknown. To remedy this serious knowledge gap, project researchers are examining the causes, effects, and forecastability of snow drought to provide needed scientific information and guidance to planners and decision makers. The central goals of...
thumbnail
This data release contains data discussed in its larger work citation (Symstad et al., 2017, Climate Risk Management 17:78-91, Associated Item at right). "ClimateComparisonData.csv" contains summary metrics of six climate projections used as climate input for quantitative simulations of hydrologic and ecological responses to climate change at Wind Cave National Park (WCNP) and the same summary metrics for 38 other climate projections available at the time that these simulations were done. "HydroData.csv" contains mean annual streamflow of a stream in WCNP and mean annual hydraulic head of a subterranean lake in Wind Cave as simulated by the rainfall-response aquifer and watershed flow (RRAWFLOW) model for two climate...


map background search result map search result map GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Monthly Water Balance Model Futures Water-Surface Profiles and Discharges for Four Stream Reaches, Ithaca,  Tompkins County N.Y. Predicted specific mean daily flow Predicted specific minimum flow Predicted hydrology (intermittency) under drier climate conditions Peak-Flow Frequency Analyses by the U.S. Geological Survey Wyoming - Montana Water Science Center Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Flood inundation depth for a gage height of 4.0 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_03) Flood inundation depth for a gage height of 6.5 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_08) Learning From Recent Snow Droughts To Improve Forecasting of Water Availability for People and Forests Data from simulations of ecological and hydrologic response to climate change scenarios at Wind Cave National Park, South Dakota, 1901-2050 Peak-flow frequency analyses for 14 selected streamgages in the Beaverhead River and Clark Fork Basins Montana, based on data through water year 2016 Geospatial dataset of flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Water surface elevation (NAVD 88) for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Peak-flow frequency analyses for Elk Creek at Augusta, Montana, based on data through water year 2018 Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) Results of peak-flow frequency analyses for 11 selected streamgages in Jefferson County, Montana, based on data through water year 2017 Indiana Regional Flow-Duration Curve Data Water-Surface Profiles and Discharges for Four Stream Reaches, Ithaca,  Tompkins County N.Y. Water surface elevation (NAVD 88) for flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Geospatial dataset of flood-inundation maps for Cayuga Inlet, Sixmile Creek, Cascadilla Creek, and Fall Creek at Ithaca, New York Flood inundation depth for a gage height of 4.0 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_03) Flood inundation depth for a gage height of 6.5 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_08) Areas of uncertainty for flood inundation extents at gage 14211500, Johnson Creek near Sycamore, Oregon (sycor_breach.shp) Data from simulations of ecological and hydrologic response to climate change scenarios at Wind Cave National Park, South Dakota, 1901-2050 Results of peak-flow frequency analyses for 11 selected streamgages in Jefferson County, Montana, based on data through water year 2017 Peak-flow frequency analyses for 14 selected streamgages in the Beaverhead River and Clark Fork Basins Montana, based on data through water year 2016 Indiana Regional Flow-Duration Curve Data Predicted hydrology (intermittency) under drier climate conditions Predicted specific mean daily flow Predicted specific minimum flow Peak-Flow Frequency Analyses by the U.S. Geological Survey Wyoming - Montana Water Science Center Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada). Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) Learning From Recent Snow Droughts To Improve Forecasting of Water Availability for People and Forests Monthly Water Balance Model Futures GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow