Skip to main content
Advanced Search

Filters: Tags: Streamflow (X) > Types: OGC WMS Layer (X)

234 results (100ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This section of the data release includes core images in the format of photos (JPG) that have been compressed into a zipped file (2018LakePowellCoring_CorePhotos.zip). It is Part 4 (of four) in this data release and contains images of the cleaned archival half from split cores as they appeared immediately after splitting (late March and early April 2019). Each photo includes a ruler (in centimeters) and X-Rite ColorChecker Classic color correction card that may be used for corrections. Drillhole information, such as location and total recovery, are outlined in “Part 1 – Drillhole information from the 2018 coring project in Lake Powell, Utah” (2018LakePowellCoring_DrillholeInfo.csv) of this data release. Each drillhole...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Animas River, Antelope Canyon, Bears Ears National Monument, Bullfrog, Bullfrog Bay, All tags...
thumbnail
Discrete volumetric and mid-section stream discharge measurements were conducted from July through October 2020 in H.J. Andrews Experimental Forest near Blue River, OR. The measured streams are part of the Lookout Creek basin, draining into Blue River and subsequently the McKenzie River on the west slope of the Cascade Range. ORWSC Streamflow measurements supplemented an eco-drought low-flow modeling project in partnership with the Forest and Rangeland Ecosystem Science Center (FRESC) and the USGS Water Mission Area (WMA). Measurements were collected at 25 selected sites with co-located HOBO data loggers and 7 miscellaneous (MISC) sites with no data loggers present. HOBO logger data were collected and processed...
thumbnail
In the dry southwestern United States, snowmelt plays a crucial role as a water source for people, vegetation, and wildlife. However, snow droughts significantly lower snow accumulations, disrupting these critical water supplies for local communities and ecosystems. Despite its large influence on land- and water-resource management, snow drought has only recently been properly defined and its historical distribution and effects on key natural resources are essentially unknown. To remedy this serious knowledge gap, project researchers are examining the causes, effects, and forecastability of snow drought to provide needed scientific information and guidance to planners and decision makers. The central goals of...
thumbnail
This dataset includes inputs and results for parameterizing the USGS Thornthwaite Monthly Water Balance Model (MWBM) to simulate annual stream permanence on National Hydrography Dataset (NHD) stream reaches. Also included are results from sensitivity analysis of MWBM parameters to final stream permanence classification (permanent or nonpermanent). The dataset includes files that link PRISM climate grids to NHD catchments and flowlines. Data tables describe the sensitivity of MWBM stream permanence classifications to each of the altered MWBM parameters. Suitable MWBM parameter sets, which resulted in accuracy of at least 65% when compared to observed surface water conditions, for modeling stream permanence are presented...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, used streamflow measurements at 11 partial-record sites and related them to nearby USGS or Idaho Power Company real-time streamgages (index sites) to provide daily mean streamflow values at ungaged (partial-record) sites within the Wild and Scenic River of the Owyhee Canyonlands Wilderness, Idaho. Daily mean streamflow was estimated by developing a regression relationship between streamflow at each partial-record site and the index site for the period of record of the index site. The regressions are then used to estimate annual and semimonthly 20-, 50-, and 80-percent exceedance probability streamflow statistics at each partial-record...
thumbnail
The dataset contains model coefficients and statistics for the 488 regression models used to estimate streamwater constituent loads for 13 watersheds in Gwinnett County, Georgia for two calibration periods, water years 2003-2010 and 2010-2020. Model terms were selected from an 11-parameter equation, which was a function of discharge, base flow, season, turbidity, and time (trend), using a forward stepwise ordinary least squares regression approach. Model coefficients were fit using U.S. Geological Survey (USGS) LOADEST load estimation software. Models were fit both with and without turbidity explanatory variables for 12 water-quality constituents: total suspended solids, suspended sediment concentration, total nitrogen,...
This data release presents a peak-flow frequency analysis (Eash and others, 2013) for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa. These methods are used to provide estimates of peak-flow quantiles for 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (AEPs). Annual peak-flow data used in the peak-flow frequency analysis for this streamgage was retrieved from the U.S. Geological Survey National Water Information System database (U.S. Geological Survey, 2021) and used with USGS flood-frequency analysis software PeakFQ (Veilleux and others, 2014). This data release contains annual peak-flow data (nishnabotna_2020_WATSTORE.txt), PeakFQ specifications...
thumbnail
This data release contains monthly 270-meter gridded Basin Characterization Model (BCMv8) climate inputs and hydrologic outputs for San Diego (SD). Gridded climate inputs include: precipitation (ppt), minimum temperature (tmn), maximum temperature (tmx), and potential evapotranspiration (pet). Gridded hydrologic variables include: actual evapotranspiration (aet), climatic water deficit (cwd), snowpack (pck), recharge (rch), runoff (run), and soil storage (str). The units for temperature variables are degrees Celsius, and all other variables are in millimeters. Monthly historical variables from water years 1896 to 2019 are summarized into water year files and long-term average summaries for water years 1981-2010....
thumbnail
As part of the Coastal Carolinas Focus Area Study of the U.S. Geological Survey National Water Census Program, the Soil and Water Assessment Tool (SWAT) was used to develop models for the Pee Dee River Basin, North Carolina and South Carolina, to simulate future streamflow and irrigation demand based on land use, climate, and water demand projections. SWAT is a basin-scale, process-based watershed model with the capability of simulating water-management scenarios. Model basins were divided into approximately two-square mile subbasins and subsequently divided into smaller, discrete hydrologic response units based on land use, slope, and soil type. The calibration period for the historic model was 2000 to 2014. The...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alexander, Alleghany, Anson, Ashe, Bladen, All tags...
thumbnail
This dataset includes spatial locations where surface water presence observations were collected during the late summer baseflow period in Mt. Rainier National Park and surrounding area in Washington State, July 2018 - September 2020. Stream flow status (continuous flow, discontinuous flow, and dry) were recorded using the FLOwPER (FLOw PERmanence) field survey available in the Survey 123 and S1 mobile application for observations collected in 2019 and 2020. Observations collected in 2018 used an earlier version of the FLOwPER survey. Additional information to describe the field conditions are included as part of the survey. The observations were processed to correspond to pixels on the medium resolution National...
thumbnail
Estimated provisional streamflow values (Messinger and Burgholzer, 201x) for streamgages in the Rappahannock, Piankatank, and York River Basins and the shifted, expanded ratings that were used to develop them are included in this dataset. This file contains source data, daily streamflow records and selected ratings that had been saved in the National Water Information Service database for water years 1991-2013. Microsoft Excel formulas that were used to compute the estimated provisional streamflow (AltFlow) tables are included, and may be used to extend the AltFlow record following the procedure described by Messinger and Burgholzer (2017), in Appendix 2. This release also contains the existing AltFlow record for...
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2016-5105 Flood-inundation maps for the Peckman River in the Townships of Verona, Cedar Grove, and Little Falls, and the Borough of Woodland Park, New Jersey, 2014.Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. Flood profiles were simulated...
thumbnail
The basis for these features is U.S. Geological Survey Scientific Investigations Report 2016-5105 Flood-inundation maps for the Peckman River in the Townships of Verona, Cedar Grove, and Little Falls, and the Borough of Woodland Park, New Jersey, 2014.Digital flood-inundation maps for an approximate 7.5-mile reach of the Peckman River in New Jersey, which extends from Verona Lake Dam in the Township of Verona downstream through the Township of Cedar Grove and the Township of Little Falls to the confluence with the Passaic River in the Borough of Woodland Park, were created by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection. Flood profiles were simulated...
This dataset includes vertical velocity profiles and river discharge at cross section of interest where velocity measurements were taken on the Arkansas River at Parkdale, Colorado. Each profile contains measurements at various depths at the y-axis, which is the vertical in the cross-sectional profile where the maximum velocity (umax) occurs. These measurements were taken using a FlowTracker, FlowTracker2 ® instrument (FlowTracker2, 2020) when wading was possible; if wading was not possible, measurements were taken from a boat using an acoustic Doppler current profiler (ADCP) under stationary bed conditions. Data are presented in a comma separated value (CSV) file.
thumbnail
This section of the data release includes drillhole information in the format of a comma-separated value (CSV) file (2018LakePowellCoring_DrillholeInfo.csv). It is Part 1 (of four) in this data release and represents the broadest hierarchical information on the dataset including the drillhole name, location, water depth, sediments top and bottom, drillhole depth, and recovery for each coring location. Each drillhole comprises multiple cores which are outlined in “Part 2 – Core and core section information from the 2018 coring project in Lake Powell, Utah” (2018LakePowellCoring_CoreSectionInfo.csv) of this data release. Core logs and spectrophotometry data are available in “Part 3 – Multi-Sensor Core Logger and spectrophotometry...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Animas River, Antelope Canyon, Bears Ears National Monument, Bullfrog, Bullfrog Bay, All tags...
thumbnail
The base-flow recession time constant (tau) is a hydrologic index that characterizes the ability of a ground-water system to supply flow to a stream draining from that system. The magnitude of tau indicates the degree of hydraulic conductivity of the stream to the groundwater system. Larger tau values indicate a stronger dependence on the groundwater system for streamflows, a smaller base-flow recession value indicates that the stream is not as dependent on the groundwater system for streamflows. Tau and other correlated hydrologic indices have been used as explanatory variables to greatly improve the predictive power of low-flow regression equations. Tau can also be used as an indicator of streamflow dependence...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CESM1-BGC Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...


map background search result map search result map Flood inundation extents for gage heights of 3.0 to 6.5 ft at gage 01389534, Peckman River at Ozone Ave at Verona, New Jersey (pecknj.shp) Flood inundation depth for a gage height of 3.0 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_01) Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests Files for the Rappahannock, Piankatank, and York River Basins Soil and Water Assessment Tool (SWAT) models for the Pee Dee River Basin used to simulate future streamflow and irrigation demand based on climate and urban growth projections Velocity Profiles and River Discharge for Cross Sections for the Arkansas River at Parkdale, Colorado, March 2018 Calculated base-flow recession time constants at streamgages in the Niobrara National Scenic River in Nebraska, 2016-18 Part 1 – Drillhole information from the 2018 coring project in Lake Powell, Utah Part 4 – Photographs of sediment cores collected in 2018 from Lake Powell, Utah Peak-flow frequency analysis for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa, in the Nishnabotna River Basin, Iowa, based on data through water year 2020 Sensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA San Diego Monthly BCMv8 Volumetric and Mid-Section Discharge Measurement data, Summer through Fall 2020, H.J. Andrews Experimental Forest, Lookout Creek Basin, Oregon Streamflow regressions and annual and semimonthly exceedance probability statistics for wild and scenic rivers, Owyhee Canyonlands Wilderness, Idaho WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Surface water presence field observation points for Mt. Rainier and surrounding area, WA, July 2018 - September 2020 13: Models coefficients and statistics for regression models used to estimate streamwater loads for 12 water-quality constituents in 13 watersheds in Gwinnett County, Georgia for water years 2003-2020 WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Velocity Profiles and River Discharge for Cross Sections for the Arkansas River at Parkdale, Colorado, March 2018 Flood inundation extents for gage heights of 3.0 to 6.5 ft at gage 01389534, Peckman River at Ozone Ave at Verona, New Jersey (pecknj.shp) Flood inundation depth for a gage height of 3.0 ft at gage 01389534, Peckman River at Ozone Avenue at Verona, New Jersey (pecknj_01) Volumetric and Mid-Section Discharge Measurement data, Summer through Fall 2020, H.J. Andrews Experimental Forest, Lookout Creek Basin, Oregon 13: Models coefficients and statistics for regression models used to estimate streamwater loads for 12 water-quality constituents in 13 watersheds in Gwinnett County, Georgia for water years 2003-2020 Calculated base-flow recession time constants at streamgages in the Niobrara National Scenic River in Nebraska, 2016-18 Peak-flow frequency analysis for U.S. Geological Survey streamgage 06810000 Nishnabotna River above Hamburg, Iowa, in the Nishnabotna River Basin, Iowa, based on data through water year 2020 San Diego Monthly BCMv8 Part 1 – Drillhole information from the 2018 coring project in Lake Powell, Utah Part 4 – Photographs of sediment cores collected in 2018 from Lake Powell, Utah Streamflow regressions and annual and semimonthly exceedance probability statistics for wild and scenic rivers, Owyhee Canyonlands Wilderness, Idaho WATSTORE Peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 PeakFQ version 7.4 specifications file for peak-flow frequency analyses for selected streamgages in Dawson and Richland Counties, and the Powder River Basin, Montana, based on data through water year 2022 WATSTORE Peak flow data for peak-flow frequency analyses for selected streamgages on the Bighorn, Tongue, and Lower Yellowstone Rivers and tributaries and Home Creek, Montana, based on data through water year 2021 Soil and Water Assessment Tool (SWAT) models for the Pee Dee River Basin used to simulate future streamflow and irrigation demand based on climate and urban growth projections Files for the Rappahannock, Piankatank, and York River Basins Surface water presence field observation points for Mt. Rainier and surrounding area, WA, July 2018 - September 2020 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Sensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA Learning From Recent Snow Droughts to Improve Forecasting of Water Availability for People and Forests