Skip to main content
Advanced Search

Filters: Tags: Streamflow (X)

979 results (41ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey's (USGS) SPAtially Referenced Regression On Watershed attributes (SPARROW) model was used to aid in the interpretation of monitoring data and simulate streamflow and water-quality conditions in streams across the Pacific Region of the Unites States. SPARROW is a hybrid empirical/process-based mass balance model that can be used to estimate the major sources and environmental factors that affect the long-term supply, transport, and fate of contaminants in streams. The spatially explicit model structure is defined by a river reach network coupled with contributing catchments. The model is calibrated by statistically relating watershed sources and transport-related properties to monitoring-based...
thumbnail
Our objective was to model specific mean daily flow (mean daily flow divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate.We used a random forest modeling approach to model the relation between specific mean daily flow on gaged streams (115 gages) and environmental variables. We then projected specific mean...
thumbnail
Our objective was to model specific minimum flow (mean of the annual minimum flows divided by drainage area [cubic feet per second per square mile]) on small, ungaged streams in the Upper Colorado River Basin. Modeling streamflows is an important tool for understanding landscape-scale drivers of flow and estimating flows where there are no gaged records. We focused our study in the Upper Colorado River Basin, a region that is not only critical for water resources but also projected to experience large future climate shifts toward a drier climate. We used a random forest modeling approach to model the relation between specific minimum flow on gaged streams (115 gages) and environmental variables. We then projected...
thumbnail
Measures used to assess trends in the 10th, 50th, and 90th quantiles of annual peak streamflow from 1916-2015 at 2,683 U.S. Geological Survey stations and within 191 4-digit HUCs in the conterminous United States. Linear quantile regression was applied to the selected quantiles of log-transformed annual peak streamflow to represent trends for a range of flood frequencies from small, common floods to large, infrequent floods. Comparative trends in pairs of quantiles were characterized as coherent, convergent, or divergent by comparing the slopes of linear quantile regression equations.
thumbnail
This data set includes WRTDS nutrient flux trend results and the values of daily streamflow trend results displayed in the Quantile-Kendall plots. For 1995-2015 nutrient trends, the method of generalized flow normalization (FNG) was used which explicitly addresses non-stationary streamflow conditions. For 2005-2015 nutrient trends, the WRTDS trend analyses used the method of stationary flow normalization (FNS) because streamflow nonstationarity is difficult to assess over this shorter duration time frame. The 1995-2015 annual nutrient trends were determined for all five nutrient parameters (TP, SRP, TN, NO23, TKN), and monthly trends were evaluated only for SRP. The 2005-2015 annual nutrient trends were determined...
thumbnail
This child page contains the model input and output data used in the model validation process for one Program for Predicting Polluting Particle Passage through Pits, Puddles and Ponds (P8) model during the validation period of the study detailed in the associated Scientific Investigations Report "Comparison of Storm Runoff Models for a Small Watershed in an Urban Metropolitan Area, Albuquerque, New Mexico" (Shephard and Douglas-Mankin, 2020). This model was used to simulate storm runoff in the Hahn Arroyo Watershed, an urbanized watershed with concrete lined channels in the northeastern quadrant of Albuquerque that exhibits flashy, monsoonal-driven storm runoff events. The model is described in detail in the associated...


map background search result map search result map Predicted specific mean daily flow Predicted specific minimum flow Lake Erie Tributaries: Nutrient and streamflow trend results Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) Trends in annual peak streamflow quantiles for 2,683 U.S. Geological Survey streamgages in the conterminous United States SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Pacific Region of the United States, 2012 Base Year P8 Validation Period Input and Output Data P8 Validation Period Input and Output Data Lake Erie Tributaries: Nutrient and streamflow trend results Predicted specific mean daily flow Predicted specific minimum flow Streamflow Permanence Probability rasters, 2004-2011, Version 2.0 (PROSPER) SPARROW model inputs and simulated streamflow, nutrient and suspended-sediment loads in streams of the Pacific Region of the United States, 2012 Base Year Trends in annual peak streamflow quantiles for 2,683 U.S. Geological Survey streamgages in the conterminous United States