Skip to main content
Advanced Search

Filters: Tags: Velocity (X) > Categories: Data (X) > Types: OGC WMS Layer (X)

14 results (61ms)   

View Results as: JSON ATOM CSV
thumbnail
These data were collected using a 1200 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 25 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been depth-averaged over the entire measured portion of the water column and temporally averaged over 5-second intervals to reduce noise. These data were collected by the U.S. Geological Survey (USGS) concurrently with environmental DNA (eDNA) sampling in this reach of the Chicago Sanitary and Ship Canal (CSSC) by the U.S. Fish and Wildlife Service (USFWS). Data were processed using the Velocity Mapping Toolbox...
thumbnail
These data were collected using a 1200 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 25 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been layer-averaged over the lower portion of the water column (0 to 4 meters above the bed). These data were collected by the U.S. Geological Survey (USGS) concurrently with environmental DNA (eDNA) sampling in this reach of the Chicago Sanitary and Ship Canal by the U.S. Fish and Wildlife Service (USFWS). Data were processed using the Velocity Mapping Toolbox (Parsons and others, 2013). NOTE: Any data assigned...
thumbnail
This dataset contains data collected during science flights using the drone-based QCam, which is a Doppler (velocity) radar designed to measure surface velocity and compute river discharge when channel bathymetry is known. Five science flights were conducted on four rivers including the Arkansas and South Platte Rivers in Colorado and the Salcha and Tanana Rivers in Alaska. Data are presented in a comma separated values (CSV) file.
thumbnail
These data are depth-averaged velocities measured by an acoustic Doppler current profiler (ADCP), as well as continuous depth-averaged velocities from a stationary location measured with an acoustic Doppler velocity meter (ADVM). These data were collected from the July 12-14, 2022, survey of the Ashtabula River near Ashtabula, Ohio. The location of the ADCP data are from approximately 1,500 feet upstream from the Bridge Street bridge to 3,000 feet upstream from the Bridge Street bridge. The ADVM data are from approximately 41° 53' 46.4"N, 80° 47' 39.5"W. ADCP data were collected using an integrated global navigation satellite system (GNSS) smart antenna with submeter accuracy. The ADCP and GNSS antenna were mounted...
thumbnail
These data were collected using a 600 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 50 centimeter bins from a moving boat. The data were georeferenced with a Trimble Ag132 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been depth-averaged over the entire measured portion of the water column and temporally averaged over 5-second intervals to reduce noise. These data were collected during water-quality surveys of the right bank of the Chicago Sanitary and Ship Canal (CSSC) and include low-velocity regions of the canal such as barge slips in addition to the main channel. Data were processed using the Velocity Mapping Toolbox (Parsons and others,...
thumbnail
ADCP data were collected on July 31-August 1, 2013 in the Dresden Island Pool on the Des Plaines River using a Teledyne Rio Grande 1200 kHz Acoustic Doppler Current Profiler with integrated Trimble Ag162 GPS. On July 31-August 1, 2013 the Des Plaines River discharge also was approximately 2,000-3,000 cfs. ADCP data was collected in reciprocal pairs along cross-sections and along roughly streamwise oriented lines between cross-sections. The data are provided in: (1) a zipped folder containing classic ascii output files exported from WinRiverII software, and a README text file indicating which files are reciprocal pairs, and which files are streamwise oriented lines (2) a zipped folder containing KML files for each...
thumbnail
The Bathymetry surface was created by plotting depths of all data points collected relative to North American Vertical Datum of 1988 (NAVD 88), which was converted using the Vertical Datum Transformation tool created by the National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey, Office of Coast Survey, and Center for Operation Oceanographic Products and Services. The elevation of the bathymetric raster surface was interpolated between these points in a GIS using a spline interpolator. A total of 432 points were used for interpolation. The points were used as the input to create a polygon feature class. The Spline tool was applied using the points and polygon to interpolate the bathymetric...
thumbnail
This data release includes the data and code used for the paper titled "A framework to facilitate development and testing of image-based river velocimetry algorithms", published in the journal Earth Surface Processes and Landforms. Three *.csv files and five *.m files with MATLAB source code are included below. Each *.csv file contains output from a hydrodynamic model of a reach of the Sacramento River near Glenn, California, with a separate file for each of three different discharges (i.e., streamflow rates): 90, 191, and 255 cubic meters per second. The hydrodynamic model used for this purpose was the Nays2DH solver available within the International River Cooperative Interface (iRIC). Provided below is a link...
thumbnail
Uncertainty of satellite discharge estimates is affected by choice of satellite sensor, hydraulic variable for observation, and discharge estimation algorithm, as well as the availability of ground-calibration data. Site selection is very important for reducing error and uncertainty in both conventional and satellite-based discharge measurements because geomorphic river characteristics have strong control over the relationships between discharge and depth, width, slope, and velocity. A ground-truth data set of 8,445 conventional hydraulic measurements, collected by acoustic Doppler current profilers (ADCP) at 503 stations in the United States was developed to examine correlation between river discharge and river...
thumbnail
Data collected during the May 14th 2015 ADCP survey were processed using a Geographic Information System for interpolation and display. The shapefile available for download depicts ADCP data points collected on May 14, 2015. Parameters include depth, velocity, and discharge collected at 1 second intervals. Ebb data points were collected during outgoing tide.
thumbnail
These data were collected using a 1200 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 25 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data were processed in the Velocity Mapping Toolbox (Parsons and others, 2013) to obtain a mean velocity field for each cross section from four individual transects at each cross section. These data were collected by the U.S. Geological Survey (USGS) concurrently with environmental DNA (eDNA) sampling in this reach of the Chicago Sanitary and Ship Canal (CSSC) by the U.S. Fish and Wildlife Service (USFWS). NOTE: Any data...
thumbnail
Data collected during the May 14th 2015 ADCP survey were processed using a Geographic Information System for interpolation and display. The shapefile available for download depicts ADCP data points collected on May 14, 2015. Parameters include depth, velocity, and discharge collected at 1 second intervals. Flood data points were collected during incoming tide.
thumbnail
This dataset contains survey data including wading and real-time kinematic (RTK) Global Positioning System (GPS) of water surface elevation and channel bed topography at cross section 5 (xs5) on March 20, 2018, which is adjacent to the U.S. Geological Survey (USGS) streamgage at Arkansas River at Parkdale, Colorado (USGS 07094500). The RTK Global Navigation Satellite System (GNSS) surveys were performed using a local base station associated with the streamgage and Trimble R8 and R10 receivers while wading the channel at cross section 5. The survey data were postprocessed by performing the National Oceanic and Atmospheric Administration Online Positioning User Service (OPUS) correction of the static observations...
thumbnail
These data were collected using a 600 kHz TRDI Rio Grande acoustic Doppler current profiler (ADCP) in mode 12 with 50 centimeter bins from a moving boat. The data were georeferenced with a Hemisphere Crescent A100 differential Global Positioning System (GPS) receiver with submeter accuracy. The data have been depth-averaged over the entire measured portion of the water column and temporally averaged over 5-second intervals to reduce noise. These data were collected during dye tracing surveys of the right bank of the Chicago Sanitary and Ship Canal and include low-velocity regions of the canal such as barge slips in addition to the main channel. Data were processed using the Velocity Mapping Toolbox (Parsons and...


    map background search result map search result map Velocity Mapping in the Dresden Pool of the Des Plaines River with ADCP Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (March 2-3, 2010) Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (December 7, 2010) Spatial distribution of layer-averaged velocity (0-4 m above the bed) measured in the ACL slip on the Chicago Sanitary and Ship Canal near Lemont, IL (December 7, 2010) Survey of velocity at cross sections in the Chicago Sanitary and Ship Canal near Sag Junction, Chicago, IL (December 7, 2010) Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (November 16, 2011) ADCP Shapefile - Flood ADCP Shapefile - Ebb Bathymetry Contours Wading survey of bed topography, gage height, and cross-sectional area for the Arkansas River near Parkdale, Colorado Surface velocity data acquired from QCam (drone-based Doppler velocity radar) for the Arkansas and South Platte Rivers in Colorado and the Salcha and Tanana Rivers in Alaska Selected Inputs of Siting Considerations for Satellite Observation of River Discharge Measurements of velocity and bathymetry in the Ashtabula River near Ashtabula, Ohio, July 12–14, 2022 Hydrodynamic model output and image simulation code for evaluating image-based river velocimetry from a case study on the Sacramento River near Glenn, California ADCP Shapefile - Ebb ADCP Shapefile - Flood Measurements of velocity and bathymetry in the Ashtabula River near Ashtabula, Ohio, July 12–14, 2022 Bathymetry Contours Wading survey of bed topography, gage height, and cross-sectional area for the Arkansas River near Parkdale, Colorado Hydrodynamic model output and image simulation code for evaluating image-based river velocimetry from a case study on the Sacramento River near Glenn, California Velocity Mapping in the Dresden Pool of the Des Plaines River with ADCP Spatial distribution of depth-averaged velocity measured in the Chicago Sanitary and Ship Canal, Chicago, IL (December 7, 2010) Surface velocity data acquired from QCam (drone-based Doppler velocity radar) for the Arkansas and South Platte Rivers in Colorado and the Salcha and Tanana Rivers in Alaska Selected Inputs of Siting Considerations for Satellite Observation of River Discharge