Skip to main content
Advanced Search

Filters: Tags: WETLANDS (X) > partyWithName: Western Alaska Landscape Conservation Cooperative (X)

27 results (25ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The Yukon-Kuskokwim Delta of Alaska is a globally important region for numerousavian species including millions of migrating and nesting waterbirds. Climate change effectssuch as sea level rise and increased storm frequency and intensity have the potential to impactwaterbird populations and breeding habitat. In order to determine the potential impacts of theseclimate-mediated changes, we investigated both short-term and long-term impacts of stormsurges to geese and eider species that commonly breed on the Yukon-Kuskokwim Delta. Todetermine short-term impacts, we compared nest densities of geese and eiders in relation to themagnitude of storms that occurred in the prior fall from 2000–2013. Additionally, we modeledgeese...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: BIRDS, BIRDS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, DELTAS, All tags...
thumbnail
This project evaluated the potential impacts of storm surges and relative sea level rise on nesting geese and eider species that commonly breed on the Yukon-Kuskokwim Delta (Y-K Delta). Habitat suitability maps for breeding waterbirds were developed to identify current waterbird breeding habitat and distributions. Short-term climate change impacts were assessed by comparing nest densities in relation to magnitude of storms that occurred in the prior fall from 2000-2013. Additionally, nest densities were modeled using random forests in relation to the time-integrated flood index (e.g., a storm specific measure accounting for both water depth and duration of flooding) for four modeled storms (2005, 2006, 2009, and...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: BIRDS, BIRDS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, DELTAS, All tags...
thumbnail
The Yukon-Kuskokwim Delta of Alaska is a globally important region for numerous avian species including millions of migrating and nesting waterbirds. Climate change effects such as sea level rise and increased storm frequency and intensity have the potential to impact waterbird populations and breeding habitat. In order to determine the potential impacts of these climate-mediated changes, we investigated both short-term and long-term impacts of storm surges to geese and eider species that commonly breed on the Yukon-Kuskokwim Delta.To do this, we used 29 years of ground-based surveys conducted as part of the U.S. Fish and Wildlife Service’s long-term waterbird monitoring program along with flood indices modeled...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: BIRDS, BIRDS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, DELTAS, All tags...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Integrated Ecosystem Model is designed to help resource managers understand the nature and expected rate of landscape change. Maps and other products generated by the IEM will illustrate how arctic and boreal landscapes are expected to alter due to climate-driven changes to vegetation, disturbance, hydrology, and permafrost. The products will also provide resource managers with an understanding of the uncertainty in the expected outcomes.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is...
thumbnail
The Integrated Ecosystem Model for Alaska project (IEM) uses down-scaled climate models as the drivers of ecosystem change to produce forecasts of future fire, vegetation, permafrost and hydrology regimes at a resolution of 1km. This effort is the first to model ecosystem change on a statewide scale, using climate change input as a major driving variable. The objectives of the IEM project are as follows; to better understand and predict effects of climate change and other stressors on landscape level physical and ecosystem processes, and to provide support for resource conservation planning.The IEM will provide resource managers with a decision support tool to visualize future landscapes in Alaska. Model outputs...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, DYNAMIC VEGETATION/ECOSYSTEM MODELS, DYNAMIC VEGETATION/ECOSYSTEM MODELS, Datasets/Database, Federal resource managers, All tags...
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represent simulated active layer thickness (ALT) in meters averaged across a decade. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Yukon-Kuskokwim Delta of Alaska is a globally important region for numerous avian species including millions of migrating and nesting waterbirds. Climate change effects such as sea level rise and increased storm frequency and intensity have the potential to impact waterbird populations and breeding habitat in the near future. In order to determine the potential impacts of these climate-mediated changes, it is important to monitor the current spatial distribution of important nesting areas and understand the importance of environmental variables in the selection of nest locations. To do this, we modeled nest density for 15 species or composite species of waterbirds that commonly breed on the Yukon-Kuskokwim Delta,...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: BIRDS, BIRDS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, DELTAS, All tags...
thumbnail
The Yukon-Kuskokwim Delta of Alaska is a globally important region for numerousavian species including millions of migrating and nesting waterbirds. Climate change effectssuch as sea level rise and increased storm frequency and intensity have the potential to impactwaterbird populations and breeding habitat. In order to determine the potential impacts of theseclimate-mediated changes, we investigated both short-term and long-term impacts of stormsurges to geese and eider species that commonly breed on the Yukon-Kuskokwim Delta. Todetermine short-term impacts, we compared nest densities of geese and eiders in relation to themagnitude of storms that occurred in the prior fall from 2000–2013. Additionally, we modeledgeese...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: BIRDS, BIRDS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, CLIMATE CHANGE IMPACT ASSESSMENT MODELS, DELTAS, All tags...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.


map background search result map search result map Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada Simulated Active Layer Thickness Simulated Mean Annual Ground Temperature Potential Evapotranspiration: CCCMA - A1B Scenario Potential Evapotranspiration: ECHAM5 - A1B Scenario IEM-CSC Factsheet with Supplement, 2015 Webinar (2015 Oct 14) Final Report: The Influence of Fall Storms on Nest Densities of Geese and Eiders on the Yukon-Kuskokwim Delta of Alaska Data Products: The impacts of storm surges on breeding waterbirds on the Yukon-Kuskokwim Delta Webinar (February 19, 2014) Part I Summary: Predicting waterbird nest distributions Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Historical Stand Age 2000-2006 Historical Stand Age 1940-1949 Historical Stand Age 1930-1939 Historical Stand Age 1900-1909 Historical Stand Age 1890-1899 Historical Stand Age 1910-1919 Historical Stand Age 1970-1979 Webinar (2015 Oct 14) Final Report: The Influence of Fall Storms on Nest Densities of Geese and Eiders on the Yukon-Kuskokwim Delta of Alaska Data Products: The impacts of storm surges on breeding waterbirds on the Yukon-Kuskokwim Delta Webinar (February 19, 2014) Part I Summary: Predicting waterbird nest distributions Integrated Ecosystem Model (AIEM) for Alaska and Northwest Canada Simulated Active Layer Thickness Simulated Mean Annual Ground Temperature Potential Evapotranspiration: CCCMA - A1B Scenario Potential Evapotranspiration: ECHAM5 - A1B Scenario IEM-CSC Factsheet with Supplement, 2015 Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Historical Stand Age 2000-2006 Historical Stand Age 1940-1949 Historical Stand Age 1930-1939 Historical Stand Age 1900-1909 Historical Stand Age 1890-1899 Historical Stand Age 1910-1919 Historical Stand Age 1970-1979