Skip to main content
Advanced Search

Filters: Tags: WHCMSC (X)

591 results (17ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Imagery acquired with unmanned aerial systems (UAS) and coupled with structure-from-motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black Beach, in Falmouth, Massachusetts to explore scientific research demands on UAS technology for topographic and habitat mapping applications. This project explored the application of consumer-grade UAS platforms...
thumbnail
Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country. The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion. In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards. One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 3DR Solo quadcopter, CMGP, Charles Point, Coastal and Marine Geology Program, Crescent Bar, All tags...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Sodus Bay, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points; geolocated, RGB-colored point...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinity of Chimney Bluffs State Park, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control points, and transect points;...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 3DR Solo quadcopter, CMGP, Chimney Bluffs, Chimney Bluffs State Park, Coastal and Marine Geology Program, All tags...
thumbnail
Geologic, sediment texture, and physiographic zone maps characterize the sea floor south and west of Martha's Vineyard and north of Nantucket, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: 32-bit GeoTIFF, 512i, Aquinnah, Atlantic Ocean, CMGP, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for the Massachusetts...
thumbnail
Low-altitude (80-100 meters above ground level) digital images were obtained from a camera mounted on a 3DR Solo quadcopter, a small unmanned aerial system (UAS), in three locations along the Lake Ontario shoreline in New York during July 2017. These data were collected to document and monitor effects of high lake levels, including shoreline erosion, inundation, and property damage in the vicinities of Braddock Bay, Sodus Bay, and Chimney Bluffs State Park, New York. This data release includes images tagged with locations determined from the UAS GPS; tables with updated estimates of camera positions and attitudes based on the photogrammetric reconstruction; tables listing locations of the base stations, ground control...
thumbnail
Low-altitude (80-100 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained from a camera mounted on a small unmanned aerial system (UAS; also known as a drone). Imagery was collected at close to low tide on seven days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which were located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rovers. The GCPs can be used as constraints during photogrammetric processing. Transect points were collected...
thumbnail
Two marine geological surveys were conducted in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven through the Long Island Sound Mapping and Research Collaborative. Sea-floor images and videos were collected at 210 sampling sites within the survey area, and surficial sediment samples were collected at 179 of the sites. The sediment data and the observations from the images and videos are used to identify sediment texture and sea-floor habitats.
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Atlantic Ocean, CMHRP, CSV, Coastal and Marine Hazards and Resources Program, Connecticut, All tags...
thumbnail
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which were located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rovers. The GCPs can be used as constraints during photogrammetric processing. Transect points...
thumbnail
Low-altitude (30-120 meters above ground level) digital images of Town Neck Beach in Sandwich, Massachusetts, were obtained with a series of cameras mounted on small unmanned aerial systems (UAS, also known as a drone). Imagery was collected at close to low tide on five days to observe changes in beach and dune morphology. The images were geolocated by using the single-frequency geographic positioning system aboard the UAS. Ground control points (GCPs) were established by using temporary targets on the ground, which were located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rovers. The GCPs can be used as constraints during photogrammetric processing. Transect points...
thumbnail
In September 2018, the USGS Woods Hole Coastal and Marine Science Center (WHCMSC), in collaboration with the US Army Corps of Engineers (USACE), conducted high-resolution geophysical mapping and sediment sampling to determine the distribution of historical mine tailings on the floor of Lake Superior. Large amounts of waste material from copper mining, locally known as “stamp sands”, were dumped into the lake in the early 20th century, with wide-reaching consequences that have continued into the present day. Mapping was focused offshore of the town of Gay on the Keweenaw Peninsula of Michigan, where ongoing erosion and re-deposition of the stamp sands has buried miles of native, white-sand beaches and is steadily...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic LIDAR lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. This 2018 update includes two new mean high water (MHW) shorelines for...


map background search result map search result map Offshore baseline for the South Carolina (SC) coastal region generated to calculate shoreline change rates Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for South Carolina (SC) Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northern North Carolina (NCnorth) Elevations surveyed at Black Beach, Falmouth, Massachusetts on 18 March 2016 (text file) Braddock West digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017 (32-bit floating point GeoTIFF image). Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2017-05-04 Ground control point and transect locations associated with images collected during unmanned aerial systems (UAS) flights over The Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 Lake Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (GeoTIFF image) Sodus North digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Chimney Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Chimney Bluffs, New York in July 2017 (GeoTIFF image) 2011 profile-derived mean high water shorelines of the Outer Cape of MA used in shoreline change analysis Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Long-term and short-term shoreline change rates for coastal region around Boston, Massachusetts calculated without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Intersects for the southern coastal region of Cape Cod Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Baseline for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2016-01-22 Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2016-01-25 Sediment sample locations and analysis collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA (Microsoft Excel file) Geotagged sea-floor images and location of bottom images collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (JPEG images, point shapefile, and CSV file) Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for the north shore of Nantucket, MA Elevations surveyed at Black Beach, Falmouth, Massachusetts on 18 March 2016 (text file) Chimney Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Chimney Bluffs, New York in July 2017 (GeoTIFF image) Sodus North digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (32-bit floating point GeoTIFF image) Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2016-01-25 Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial Systems Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2017-05-04 Braddock West digital elevation model (DEM) from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Braddock Bay, New York in July 2017 (32-bit floating point GeoTIFF image). Lake Bluffs orthomosaic from low-altitude aerial imagery from unmanned aerial systems (UAS) flights over of the Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 (GeoTIFF image) Geotagged Low-Altitude Aerial Imagery From Unmanned Aerial System Flights Over Town Neck Beach, in Sandwich, Massachusetts, on 2016-01-22 Ground control point and transect locations associated with images collected during unmanned aerial systems (UAS) flights over The Lake Ontario shoreline in the vicinity of Sodus Bay, New York in July 2017 Sediment sample locations and analysis collected in the vicinity of Buffalo Reef, Michigan, within Lake Superior during USGS Field Activity 2018-043-FA (Microsoft Excel file) Long-term and short-term shoreline change rates for coastal region around Boston, Massachusetts calculated without the proxy-datum bias using the Digital Shoreline Analysis System version 5.0 Uncertainty table for lidar-derived shorelines used when calculating rates in the Digital Shoreline Analysis System software for the north shore of Nantucket, MA Geotagged sea-floor images and location of bottom images collected in Long Island Sound, Connecticut and New York, in fall 2017 and spring 2018 by the U.S. Geological Survey, University of Connecticut, and University of New Haven during field activities 2017-056-FA and 2018-018-FA (JPEG images, point shapefile, and CSV file) Intersects for the southern coastal region of Cape Cod Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 Baseline for the Buzzards Bay coastal region in Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.0 2011 profile-derived mean high water shorelines of the Outer Cape of MA used in shoreline change analysis Elevation of the late Wisconsinan to early Holocene regressive unconformity (Ur) offshore of western and southern Martha's Vineyard and north of Nantucket, Massachusetts Digital Shoreline Analysis System version 4.3 Transects with Short-Term End Point Rate Calculations for northern North Carolina (NCnorth) Digital Shoreline Analysis System version 4.3 Transects with Short-Term Linear Regression Rate Calculations for South Carolina (SC) Offshore baseline for the South Carolina (SC) coastal region generated to calculate shoreline change rates