Skip to main content
Advanced Search

Filters: Tags: Water Resources (X) > Categories: Publication (X)

16 results (5ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
The Colorado River system exhibits the characteristics of a heavily over-allocated or ?closing water system?. In such systems, development of mechanisms to allow resource users to acknowledge interdependence and to engage in negotiations and agreements becomes necessary. Recently, after a decade of deliberations and environmental assessments, the Glen Canyon Dam Adaptive Management Program (GCDAMP) was established to monitor and analyze the effects of dam operations on the Grand Canyon ecosystem and recommend adjustments intended to preserve and enhance downstream physical, cultural and environmental values. The Glen Canyon Dam effectively separates the Colorado into its lower and upper basins. Dam operations and...
This recorded presentation is from the April 17, 2014 workshop for the "Integrated Scenarios of the Future Northwest Environment" project. The recording is available on YouTube. The Integrated Scenarios project is an effort to understand and predict the effects of climate change on the Northwest's climate, hydrology, and vegetation. The project was funded by the Northwest Climate Science Center and the Climate Impacts Research Consortium.
A key feature of anticipated 21st century droughts in Southwest North America is the concurrence of elevated temperatures and increased aridity. Instrumental records and paleoclimatic evidence for past prolonged drought in the Southwest that coincide with elevated temperatures can be assessed to provide insights on temperature-drought relations and to develop worst-case scenarios for the future. In particular, during the medieval period, ∼AD 900-1300, the Northern Hemisphere experienced temperatures warmer than all but the most recent decades. Paleoclimatic and model data indicate increased temperatures in western North America of approximately 1 °C over the long-term mean. This was a period of extensive...
Groundwater resources are being overexploited in arid and semi-arid environments globally, which necessitates a deeper understanding of the roles that groundwater plays in earth system processes. Of particular importance is the elucidation of groundwater's effect on the generation of atmospheric dust. While many spatially extensive, highly productive dust sources are influenced to some degree by water resource use, including groundwater pumping and other modifications to shallow groundwater tables (<10 m from the surface), links between near-surface groundwater processes and dust production have only recently been identified. Processes associated with shallow groundwater tables include the vertical movement of salts...
Global synthesis of the findings from �140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40?374 000 km2) range from 0�2 to 35 mm year1, representing 0�1?5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to �720 m year1, results from focussed...
A wide variety of regional assessments of the water-related impacts of climatic change have been done over the past two decades, using different methods, approaches, climate models, and assumptions. As part of the Water Sector research for the National Assessment of the Implications of Climatic Variability and Change for the United States, several major summaries have been prepared, looking at the differences and similarities in results among regional research projects. Two such summaries are presented here, for the Colorado River Basin and the Sacramento River Basin. Both of these watersheds are vitally important to the social, economic, and ecological character of their regions; both are large snowmelt-driven...
The Colorado River supplies water to 27 million users in 7 states and 2 countries and irrigates over 3 million acres of farmland. Global climate models almost unanimously project that human-induced climate change will reduce runoff in this region by 10-30%. This work explores whether currently scheduled future water deliveries from the Colorado River system are sustainable under different climate-change scenarios. If climate change reduces runoff by 10%, scheduled deliveries will be missed approximately 58% of the time by 2050. If runoff reduces 20%, they will be missed approximately 88% of the time. The mean shortfall when full deliveries cannot be met increases from approximately 0.5-0.7 billion cubic meters per...
ABSTRACT: In many of the limited water resource areas of the western United States most water supplies have been put to beneficial uses. Energy, a fast expanding high-priority water use, is making challenging demands for these limited supplies. Can water supplies be stretched, supplemented, or redirected so that present uses can be maintained and energy water needs satisfied? The Bureau of Reclamation is investigating innovative methods of water management, reregulation, and use to meet these demands. Related programs under study include potentials for: development of additional hydroelectric power, installation of low-head turbines in western water courses, utilization of pumped storage and underground storage,...
Humans have exerted large-scale changes on the terrestrial biosphere, primarily through agriculture; however, the impacts of such changes on the hydrologic cycle are poorly understood. The purpose of this study was to test the hypothesis that the conversion of natural rangeland ecosystems to agricultural ecosystems impacts the subsurface portion of the hydrologic cycle by changing groundwater recharge and flushing salts to underlying aquifers. The hypothesis was examined through point and areal studies investigating the effects of land use/land cover (LU/LC) changes on groundwater recharge and solute transport in the Amargosa Desert (AD) in Nevada and in the High Plains (HP) in Texas, US. Studies use the fact that...
In response to recent severe drought conditions throughout the state, Arizona recently developed its first drought plan. The Governor's Drought Task Force focused on limiting the economic and social impacts of future droughts through enhanced adaptation and mitigation efforts. The plan was designed to maximize the use of new, scientific breakthroughs in climate monitoring and prediction and in vulnerability assessment. The long term objective of the monitoring system is to allow for evaluation of conditions in multiple sectors and at multiple scales. Stakeholder engagement and decision support are key objectives in reducing Arizona's vulnerability in light of the potential for severe, sustained drought. The drivers...
Feedstock production for large scale development of the U.S. ethanol industry and introduction of cellulose-to-ethanol technology will require extensive changes in land use and field management. Hence, this production will likely have significant impact on water demand and quality. This study compares two ‘what if’ scenarios for attaining a 227.1 hm3 of ethanol by 2030 and 3.8 hm3 of biodiesel by 2012. In the first scenario cellulose-to-ethanol technology is introduced in 2012, while in the second scenario the technology is delayed until 2015. Results show that the timing of introduction of cellulose-to-ethanol technology will affect the water use and water quality related input use in primarily in the eastern part...
Abstract (from http://scholarworks.umass.edu/cee_ewre/72/): In the Northeast U.S. increasing stream temperatures due to climate change pose a serious threat to cool and cold water fish communities, as well as aquatic ecosystems as a whole. In this study, three stream temperature models were implemented for two different case-study basins in the Northeast Climate Science Center region. Two coupled hydrology-stream temperature (physical) models were used: VIC-RBM and SWAT-Ficklin et al. (2012). The third model implemented was a nonlinear regression (statistical) model developed by Mohseni et al. (1998). Metrics were developed to assess these models regarding their prediction skill, data input requirements, spatial...
thumbnail
The ascii grids represent regional probabilities that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL) for water quality. The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 meters (m). We utilized prediction modeling methods, specifically boosted regression trees (BRT) with a Bernoulli error distribution within a statistical learning...
thumbnail
In 2021 and 2022, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Water Resources (IDWR), drilled and constructed well SEP 16 (431900112593601) approximately 6 miles south-southeast of Big Southern Butte in Butte County, Idaho. The purpose of the well installation was to collect geologic, geophysical, and hydrologic data. On July 13, 2022, the USGS Idaho National Laboratory Project Office (INLPO) collected select geophysical logs within the cased well including natural gamma, neutron, neutron porosity, and gamma-gamma dual density logs. Gyroscopic deviation data were also collected during geophysical surveying to account for the horizontal and vertical displacement of the well. On...
ABSTRACT: In many of the limited water resource areas of the western United States most water supplies have been put to beneficial uses. Energy, a fast expanding high-priority water use, is making challenging demands for these limited supplies. Can water supplies be stretched, supplemented, or redirected so that present uses can be maintained and energy water needs satisfied? The Bureau of Reclamation is investigating innovative methods of water management, reregulation, and use to meet these demands. Related programs under study include potentials for: development of additional hydroelectric power, installation of low-head turbines in western water courses, utilization of pumped storage and underground storage,...


    map background search result map search result map Probability distribution grids of dissolved oxygen and dissolved manganese concentrations at selected thresholds in drinking water depth zones, Central Valley, California Drilling, construction, geophysical, water quality, and aquifer test data for well SEP 16, Butte County, Idaho Probability distribution grids of dissolved oxygen and dissolved manganese concentrations at selected thresholds in drinking water depth zones, Central Valley, California