Skip to main content
USGS - science for a changing world
Advanced Search

Filters: Tags: Water Resources (X) > Extensions: Project (X)

30 results (49ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Shale gas is a key source of onshore domestic energy for the United States and production of this resource is increasing rapidly. Development and extraction of shale gas requires hydraulic fracturing, which entails horizontal drilling, perforation of steel casing and cement grout using explosive charges, and expansion of fractures using fluids under high pressure. Concern over potential environmental effects of shale gas development is growing and based on a recent review there is very little information in the scientific literature on potential environmental effects of hydraulic fracturing. We propose to conduct the first broad scale, data-based assessment of the potential effects of hydraulic fracturing on water...
thumbnail
There has been increasing attention placed on the need for water availability information at ungauged locations, particularly related to balancing human and ecological needs for water. Critical to assessing water availability is the necessity for daily streamflow time series; however, most of the rivers in the United States are ungauged. This proposal leverages over $1M currently allocated to the USGS National Water Census Program towards developing an integrated modeling approach to estimate daily streamflow at ungauged locations, with the ultimate goal of providing daily streamflow estimates at 160,000 ungauged catchments across the United States. By assembling a diverse and prolific group of international scientists,...
thumbnail
There is a need to understand how alteration of physical processes on the Rio Grande River have impacted aquatic biota and their habitats, and a need to predict potential future effects of climate change on biotic resources in order to prescribe research and management activities that will enhance conservation of aquatic species. We propose a project with the goal of developing monitoring recommendations and identifying research needs for aquatic ecological resources in the Big Bend region of the Rio Grande. This goal will be targeted by synthesizing and analyzing available data and literature for aquatic species in the project region. In particular, we will work to develop time series of abundance and population...
thumbnail
Global hydroclimatic conditions have been significantly altered, over the past century, by anthropogenic influences that arise from warming global climate and also from local/regional anthropogenic disturbances. There has been never been an effort that has systematically analyzed how the spatio-temporal variability of land-surface fluxes vary in natural and human-altered watersheds globally. This synthesis study will adapt and extend the classical Budyko framework to quantify the role of drivers - changing climate and local human disturbances - in altering flow regimes and in creating urban heat island episodes over the globe. An allied goal is to develop parsimonious hydroclimatic models that explain the spatio-temporal...
thumbnail
This U.S. Geological Survey (USGS) Data Release represents geospatial and tabular data on irrigation water use in Kansas. The data release was produced in compliance with open data requirements. The dataset consists of 3 separate items with similar attributes aggregated to different geographic extents: 1. Kansas counties; 2. Kansas regional planning areas used in the Kansas Water Plan; and 3. Kansas irrigation water-use analysis regions. Reported 2014 water withdrawn for irrigation, acres irrigated, and application rates along with the published application rate statistics from the previous 4 years (2010–13) are shown with the 2014 statistics and are used to calculate a 5-year average. The 2014 annual total...
thumbnail
In the dry southwestern United States, snowmelt plays a crucial role as a water source for people, vegetation, and wildlife. However, snow droughts significantly lower snow accumulations, disrupting these critical water supplies for local communities and ecosystems. Despite its large influence on land- and water-resource management, snow drought has only recently been properly defined and its historical distribution and effects on key natural resources are essentially unknown. To remedy this serious knowledge gap, project researchers are examining the causes, effects, and forecastability of snow drought to provide needed scientific information and guidance to planners and decision makers. The central goals of...
thumbnail
Models that predict the flow of rivers and streams are critically important for planning flood control, hydropower, and reservoir operations, as well as for management of fish and wildlife populations. As temperatures and precipitation regimes change globally, the need to improve and develop these models for a wider spatial coverage and higher spatial fidelity becomes more imperative. Currently, one of the biggest impediments to developing robust streamflow knowledge is incomplete understanding of the range of timescales over which water is stored (e.g., in snowpack, soils, and groundwater) in watersheds, as well as the processes and factors that control those storage timescales. This working group will address...
thumbnail
Geographically Isolated Wetlands (GIWs) occur along gradients of hydrologic and ecological connectivity and isolation, even within wetland types (e.g., forested, emergent marshes) and functional classes (e.g., ephemeral systems, permanent systems, etc.). Within a given watershed, the relative positions of wetlands and open-waters along these gradients influence the type and magnitude of their chemical, physical, and biological effects on downgradient waters. In addition, the ways in which GIWs connect to the broader hydrological landscape, and the effects of such connectivity on downgradient waters, depends largely upon climate, geology, and relief, the heterogeneity of which expands with increasing scale. Developing...
thumbnail
River ecosystems support a wide diversity of biota, including thousands of fish species, which are variously adapted to the dynamic environments provided by flowing-water habitats. One of the primary ways that human activities diminish the biological capacity of rivers is by altering the natural hydrologic variability of river systems through regulation and diversion of streamflow for other uses. Managers may be able to avoid some of the worst effects of flow management on aquatic biota if we understand the mechanisms by which streamflow components, such as unusually high and low flow events, affect populations (e.g., by influencing recruitment and mortality). Numerous past studies have described correlative associations...
thumbnail
Fresh water is arguably the most valuable resource on the planet, but human activities threaten freshwater ecosystems. For example, use of synthetic chemicals, such as pesticides, road salts, and nutrients, has led to the ubiquitous contamination of aquatic systems, jeopardizing the integrity of ecological communities. Given the importance biodiversity plays in maintaining ecosystem health and function and the continued decline of freshwater species, it is vital to understand the direct, indirect, and lasting effects of synthetic contaminants on biota in freshwater systems. The majority of our knowledge regarding contaminant effects is comprised of short-term, single-contaminant laboratory toxicity tests that describe...
In 2006, the Century Commission for a Sustainable Florida called for an identification of those lands and waters in the state that are critical to the conservation of Florida’s natural resources. In response, the Florida Natural Areas Inventory, University of Florida GeoPlan Center, and Florida Fish & Wildlife Conservation Commission collaborated to produce CLIP - the Critical Lands and Waters Identification Project. CLIP is a GIS database of statewide conservation priorities for a broad range of natural resources, including biodiversity, landscape function, surface water, groundwater, and marine resources. CLIP is now being used to inform planning decisions by the Peninsular Florida Landscape Conservation Cooperative,...
thumbnail
Groundwater withdrawals in the western US are a critical component of the water resources strategy for the region. Climate change already may be substantially altering recharge into groundwater systems; however, the quantity and direction (increase or decrease) of changes are relatively unknown as most climate change assessments have focused on surface water systems. We propose to conduct a broad scale literature review followed by a synthesis of available data, analysis and simulations with available downscaled climate scenarios to understand how recharge in the western US might respond to plausible climatic shifts during the rest of the 21st Century. We will produce an estimated range of impacts on groundwater...
thumbnail
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of directly manipulating global solar radiation by augmenting stratospheric SO2 is receiving increasing attention as CO2 emissions continue to increase - these manipulations are anticipated to decrease precipitation, a change that may be as influential as temperature increases in dryland ecosystems. We propose to integrate a proven...
thumbnail
Everyone needs clean drinking water in order to thrive. The US EPA and public water purveyors in the US work together in adherence with the Safe Drinking Water Act to make water safe for public consumption. The recent media coverage of lead in public drinking water supplies in Flint, Michigan, and schools in many cities with aging infrastructure throughout the US has raised public awareness of drinking water as a potential pathway of exposure to toxic chemicals. Epidemiologists and other researchers have conclusively shown that high arsenic levels in drinking water in Bangladesh, Taiwan, and South America cause adverse human health outcomes. However, research in study populations with levels of arsenic exposure...
thumbnail
Resilience science provides a conceptual framework and methodology for quantitatively assessing the ability of a system to remain in a particular state. Probable non-linear ecological responses to global change, including climate change, require a clear framework for understanding and managing resilience. However, much of the resilience research to date has been qualitative in nature, and frameworks developed for the implementation of resilience science have been either vague or focused on the social component of social-ecological systems. Attempts to quantify resilience and operationalize the concept include the cross-scale resilience model, discontinuity theory and the early detection of leading indicators of...
thumbnail
Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. The GRACE (Gravity Recovery and Climate Experiment) satellites launched in 2002, with sensors designed to measure changes in the Earth’s gravitational field at large spatial scales (≥ ~200,000 km2). These changes are primarily driven by changes in water storage on the Earth’s surface. Estimates of groundwater storage changes based on these gravity measurements have attracted considerable media attention in the U.S. and globally. However, groundwater storage changes are computed indirectly by subtracting snow, surface water, and soil moisture storage from the total water storage monitored...
thumbnail
One of the grand challenges of Earth Surface Science and Natural Resource Management lies in the prediction of mass and energy transfer for large watersheds and landscapes. High resolution topography (lidar) datasets show potential to significantly advance our understanding of hydrologic and geomorphic processes controlling mass and energy transfer because they represent features at the appropriate fine scale on which surface processes operate. While lidar datasets have become readily available across the United States, challenges remain in extracting accurate and objective information relevant for hydrologic and geomorphic research, modeling, and prediction, as well as watershed management. We primarily focus our...
thumbnail
Climate change is expected to cause more intense and frequent extreme weather events, but we only have a basic understanding of how these events might alter freshwater systems. Storms are likely to impact lake systems through delivery of sediments from watersheds and mixing of the water column, both of which could have important consequences for phytoplankton. Phytoplankton are the base of the food web; their community configuration and how the community changes across seasons have large impacts on ecosystem processes such as energy flow, nutrient cycling, and carbon cycling. External disturbances may abruptly alter phytoplankton community dynamics and thus impact ecosystem function. The effects of storms on the...
thumbnail
The transport of dissolved organic matter (DOM) by rivers is an important component of the global carbon cycle, affects ecosystems and water quality, and reflects biogeochemical and hydrological processes in watersheds. Understanding the fundamental relationships between discharge and DOM concentration and composition reveals important information about watershed flow paths, soil flushing, connectivity to riparian zones, organic matter leaching, soil moisture, and climatic influences. Data to describe these processes - both magnitude and timing - is critical for modeling and predicting watershed DOM dynamics, particularly in light of land use and climate change . Despite several decades of data collection, a synthesis...
thumbnail
Streamflow is declining in many parts of the United States (US) due to factors including groundwater pumping, land use change, and climate change. Streamflow depletion, a reduction in groundwater discharge to a stream due to human activities such as pumping and/or land use change, tends to evolve slowly and can be entirely invisible for many years to decades. This is because streamflow depletion can be masked by the natural and/or climate change-induced variability in streamflow, and groundwater storage can buffer the impacts on streams. The negative effects on both anthropogenic and ecological systems can evolve over decades or more, and specific causes and potential solutions to these issues are often difficult...


map background search result map search result map Ecological changes in aquatic communities in the Big Bend reach of the Rio Grande: Synthesis and future monitoring needs Irrigation water use in Kansas, 2014 Learning From Recent Snow Droughts To Improve Forecasting of Water Availability for People and Forests Critical Land and Water Identification Project (CLIP) Update Ecological changes in aquatic communities in the Big Bend reach of the Rio Grande: Synthesis and future monitoring needs Irrigation water use in Kansas, 2014 Learning From Recent Snow Droughts To Improve Forecasting of Water Availability for People and Forests