Skip to main content
Advanced Search

Filters: Tags: Wildfire (X) > Categories: Data (X)

115 results (11ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
On August 25, 2015 speaker Matt Germino presented on his work restoring sagebrush in the Great Basin. Shrubs are ecosystem foundation species in most of the Great Basin’s landscapes. Most of the species, including sagebrush, are poorly adapted to the changes in fire and invasive pressures that are compounded by climate change. This presentation gives an overview of challenges and opportunities regarding restoration of sagebrush and blackbrush, focusing on climate adaptation, selection of seeds and achieving seeding and planting success. Results from Great Basin LCC supported research on seed selection and planting techniques are presented.
thumbnail
Burn probability (BP) raster dataset predicted for the 2080-2100 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 2 (FIL2) with flame lengths in the range of 0.6-1.2 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 5 (FIL5) with flame lengths in the range of 2.4-3.7 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Wildfire and fuel treatment locations for the USFWS Pacific Southwest Region (California, Nevada, Klamath Basin OR) extracted from the Fire Management Information System (FMIS) on October 23, 2015, for fiscal years 1980-2015.
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
First, we would like to thank the wildland fire advisory group. Their wisdom and guidance helped us build the dataset as it currently exists. Currently, there are multiple, freely available wildland fire datasets that identify wildfire and prescribed fire areas across the United States. However, these datasets are all limited in some way. Time periods, spatial extents, attributes, and maintenance for these datasets are highly variable, and none of the existing datasets provide a comprehensive picture of wildfires that have burned since the 1800s. Utilizing a series of both manual processes and ArcGIS Python (arcpy) scripts, we merged 40 of these disparate datasets into a single dataset that encompasses the known...
thumbnail
Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. This dataset presents projections of historic and future fire probability for the southcentral U.S. using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM, Guyette et al., 2012). Climate data from 1900-1929 and projected climate data for 2040-2069 and 2070-2099 were used as model inputs to the Physical Chemistry Fire Frequency Model (Guyette et al. 2012) to estimate fire probability. Baseline and future time period data are from three global climate models (GCMs): CGCM, GFDL, and HadCM3. The nine associated data sets (tiffs) represent estimated change in mean fire probability...
thumbnail
This USGS Data Release section presents tipping-bucket rain gage data collected following the 2000 Cerro Grande Fire near Los Alamos, New Mexico. Further details are provided in https://onlinelibrary.wiley.com/doi/10.1002/hyp.6806.
thumbnail
Conditional Flame Length (CFL) is an estimate of the mean flame lengths for each pixel, and was predicted for the 2050-2070 period in the Rio Grande area using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway. CFL...
thumbnail
Fire type predicted for the 2020-2040 period in the Rio Grande area with five classes: 1) shrub vegetation with torching flames; 2) shrub vegetation without torching flames; 3) forest with torching flames; 4) forest without torching flames; 5) grass or non-vegetation. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model...
thumbnail
Burn probability (BP) raster dataset predicted for the 2020-2040 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 1 (FIL1) with flame lengths in the range of 0-0.6 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
This data release presents measurements and derived parameters for attributes of bulk density, loss on ignition, soil-water retention, and hydraulic conductivity for a site (Richardson) near Hess Creek in interior Alaska, USA. These measurements are useful for hydrologic modeling and predictions of water availability in this region.
thumbnail
This product releases data on soil physical and hydraulic properties in the area affected by the 2011 Las Conchas Fire in New Mexico, USA. Soil samples were collected in the summer of 2015 to assess the state of the watershed following the 2011 wildfire. Data include soil-hydraulic properties of field-saturated hydraulic conductivity and sorptivity from tension infiltrometer measurements on soil cores. Soil physical properties include bulk density, as-sampled volumetric soil-water content, and saturated volumetric soil-water content for 6-cm length soil cores. Soil properties of soil-particle size, bulk density, and soil organic matter content from loss on ignition for soil core splits of 0-1. 1-3, and 3-6 cm depth....
thumbnail
***This data set is superseded by Welty, J.L., and Jeffries, M.I., 2021, Combined wildland fire datasets for the United States and certain territories, 1800s-Present: U.S. Geological Survey data release, https://doi.org/10.5066/P9ZXGFY3.*** This dataset is comprised of four different zip files. Zip File 1: A combined wildfire polygon dataset ranging in years from 1878-2019 (142 years) that was created by merging and dissolving fire information from 12 different original wildfire datasets to create one of the most comprehensive wildfire datasets available. Attributes describing fires that were reported in the various source data, including fire name, fire code, ignition date, controlled date, containment date, and...
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in temporally dense time series of Landsat Analysis Ready Data (ARD) scenes to produce the Landsat Burned Area Products. The algorithm uses predictors derived from individual ARD Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Scene-level products include pixel-level burn probability (BP) and burn classification (BC) images corresponding to each Landsat image in the ARD time series. Annual composite products are also available by summarizing the scene-level products. Prior to generating annual composites, individual scenes that had > 0.010 burned proportion...
thumbnail
This data release includes time-series data from a monitoring site located in a small (0.12 km2) drainage basin in the Las Lomas watershed in Los Angeles County, CA, USA. The site was established after the 2016 Fish Fire and recorded a series debris flows in the first winter after the fire. The station is located along the channel at the outlet of the study area (34 9’18.50”N, 117 56’41.33”W, WGS84). The data were collected between November 15, 2016 and February 23, 2017. The data include two types of time series: (1) continuous 1-minute time series of rainfall and flow stage recorded by a laser distance meter suspended over the channel (LasLomasContinuous.csv), and (2) 50-Hz time series of flow stage and flow-induced...


map background search result map search result map Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area Conditional Flame Length predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2020 to 2040 for Rio Grande study area Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015 Soil Physical and Hydraulic Properties in the Area Affected by the 2011 Las Conchas Fire in New Mexico Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Fire probability for 1900-1929 using GFDL baseline climate values Post-wildfire debris-flow monitoring data, Las Lomas, 2016 Fish Fire, Los Angeles County, California, November 2016 to February 2017 Loss on ignition near Hess Creek in interior Alaska Combined wildfire datasets for the United States and certain territories, 1878-2019 The Landsat Collection 2 Burned Area Products for the conterminous United States (ver. 2.0, April 2024) Post-wildfire rain gage data for Rendija Canyon, New Mexico Post-wildfire debris-flow monitoring data, Las Lomas, 2016 Fish Fire, Los Angeles County, California, November 2016 to February 2017 Loss on ignition near Hess Creek in interior Alaska Soil Physical and Hydraulic Properties in the Area Affected by the 2011 Las Conchas Fire in New Mexico Post-wildfire rain gage data for Rendija Canyon, New Mexico Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Conditional Flame Length predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area Fire probability for 1900-1929 using GFDL baseline climate values Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015 The Landsat Collection 2 Burned Area Products for the conterminous United States (ver. 2.0, April 2024) Combined wildfire datasets for the United States and certain territories, 1878-2019