Skip to main content
Advanced Search

Filters: Tags: Wildfire (X) > Types: ArcGIS Service Definition (X)

34 results (128ms)   

View Results as: JSON ATOM CSV
thumbnail
Burn probability (BP) raster dataset predicted for the 2080-2100 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 2 (FIL2) with flame lengths in the range of 0.6-1.2 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 5 (FIL5) with flame lengths in the range of 2.4-3.7 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Wildfire and fuel treatment locations for the USFWS Pacific Southwest Region (California, Nevada, Klamath Basin OR) extracted from the Fire Management Information System (FMIS) on October 23, 2015, for fiscal years 1980-2015.
thumbnail
Conditional Flame Length (CFL) is an estimate of the mean flame lengths for each pixel, and was predicted for the 2050-2070 period in the Rio Grande area using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway. CFL...
thumbnail
Fire type predicted for the 2020-2040 period in the Rio Grande area with five classes: 1) shrub vegetation with torching flames; 2) shrub vegetation without torching flames; 3) forest with torching flames; 4) forest without torching flames; 5) grass or non-vegetation. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model...
thumbnail
Burn probability (BP) raster dataset predicted for the 2020-2040 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 1 (FIL1) with flame lengths in the range of 0-0.6 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Fire type predicted for the 2080-2100 period in the Rio Grande area with five classes: 1) shrub vegetation with torching flames; 2) shrub vegetation without torching flames; 3) forest with torching flames; 4) forest without torching flames; 5) grass or non-vegetation. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 3 (FIL3) with flame lengths in the range of 1.2-1.8 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 1 (FIL1) with flame lengths in the range of 0-0.6 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2020-2040 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Fire type predicted for the 2050-2070 period in the Rio Grande area with five classes: 1) shrub vegetation with torching flames; 2) shrub vegetation without torching flames; 3) forest with torching flames; 4) forest without torching flames; 5) grass or non-vegetation. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model...
thumbnail
A raster identifying previously burned areas as being 1) recovered (to sagebrush-dominant ecosystem), 2) recovering, or 3) transitioned to annual grass-dominated.
thumbnail
Burn probability (BP) raster dataset predicted for the 2050-2070 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Fire Intensity raster dataset predicted for the 2050-2070 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.


map background search result map search result map Burn Probability for Fireline Intensity Class 1, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 3, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2020 to 2040 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2050 to 2070 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area Conditional Flame Length predicted for 2050 to 2070 for Rio Grande study area Fire Intensity predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2020 to 2040 for Rio Grande study area Fire type predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2080 to 2100 for Rio Grande study area Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015 State transition model of cumulative burned area to annual grass in the Great Basin region of the Western U.S. Burn Probability for Fireline Intensity Class 1, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 3, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2020 to 2040 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Conditional Flame Length predicted for 2050 to 2070 for Rio Grande study area Fire Intensity predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2020 to 2040 for Rio Grande study area Fire type predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2050 to 2070 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area State transition model of cumulative burned area to annual grass in the Great Basin region of the Western U.S. Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015