Skip to main content
Advanced Search

Filters: Tags: Wildfire (X) > Types: Citation (X) > partyWithName: U.S. Geological Survey (X)

10 results (41ms)   

View Results as: JSON ATOM CSV
thumbnail
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. The USGS conducts post-fire debris-flow hazard assessments for select fires in the Western U.S. We use geospatial data related to basin morphometry, burn severity, soil properties, and rainfall characteristics to estimate the probability and volume of debris flows that may occur in response to a design storm.
thumbnail
This dataset represents 25 parallel longitudinal profiles that were extracted from terrestrial lidar point clouds taken during six survey periods. The six lidar surveys were conducted between 7 October 2010 and 8 October 2013. Over that time a colluvial hollow eroded into a fluvial channel. The longitudinal profiles show the topography of the colluvial hollow for each survey period. The width of the original colluvial hollow was approximately 1.25 m, and a longitudinal profile was extracted every 5 cm for the entire length of the hollow, resulting in 25 parallel longitudinal profiles. These data can be used to observe the transition of the colluvial hollow to a fluvial channel and furthermore they show the development...
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
This product releases data on soil physical and hydraulic properties in the area affected by the 2011 Las Conchas Fire in New Mexico, USA. Soil samples were collected in the summer of 2015 to assess the state of the watershed following the 2011 wildfire. Data include soil-hydraulic properties of field-saturated hydraulic conductivity and sorptivity from tension infiltrometer measurements on soil cores. Soil physical properties include bulk density, as-sampled volumetric soil-water content, and saturated volumetric soil-water content for 6-cm length soil cores. Soil properties of soil-particle size, bulk density, and soil organic matter content from loss on ignition for soil core splits of 0-1. 1-3, and 3-6 cm depth....
thumbnail
The focus of the study, associated with these data, is a 540-km2 area at the low-elevation northern end of the 1460-km2 Milford Flat Fire in west-central Utah, and includes burned and adjacent unburned areas. Uncontrolled wildfire in arid and semiarid ecosystems has become an increasing concern in recent decades. Active rehabilitation of fire-affected areas is often quickly initiated to minimize long-term ecosystem damage. However, the complex soil-geomorphic-vegetation patterns and low and variable moisture conditions in these regions makes restoration challenging. To further inform these post-fire management decisions, we present results from 5-years of vegetation and sediment flux monitoring following the Milford...
thumbnail
This dataset represents thermoluminescence (TL) data that was obtained after a series of experiments to investigate how TL techniques can indicate the depth of soil heating. This project was attempted to ultimately predict changes in erosion properties in burned areas subject to debris flow hazards. The soil samples were obtained from an area burned by the Silverado wildfire (September 12 to 20, 2014). The dataset includes 3 soil samples and 1 control sample. The three burned soil samples were obtained throughout the burned watershed, and the control sample was taken in an unburned area. These will be referred to as sample 3, sample 7, sample 10, and control 1. All soil was obtained on April 23, 2015. The sample...
thumbnail
Mitigation of ecological damage caused by rangeland wildfires has historically been an issue restricted to the western United States. It has focused on conservation of ecosystem function through reducing soil erosion and spread of invasive plants. Effectiveness of mitigation treatments has been debated recently. We searched for literature on postfire seeding of rangelands worldwide. Literature databases searched included SCOPUS, Dissertation Abstracts, Forest Science, Tree search, Web of Science, Google Scholar, and science.gov. Search terms within publications included fire or wildfire in combination with seeding, rehabilitation, restoration, revegetation, stabilization, chaining, disking, drilling, invasives,...
thumbnail
Post-fire rehabilitation seeding in the U.S. Intermountain West, primarily conducted by the Bureau of Land Management, is designed to reduce the risk of erosion and weed invasion while increasing desirable plant cover. Seeding effectiveness is typically monitored for three years following treatment, after which a closeout report is prepared. We evaluated 220 third-year closeout reports describing 214 aerial and 113 drill seedings implemented after wildfires from 2001 through 2006. Each treatment was assigned a qualitative success rating of good, fair, poor, or failure based on information in the reports. Seeding success varied by both treatment (aerial or drill) and year. Aerial seedings were rated 13.6% good, 18.3%...
thumbnail
Wildfire is a dominant ridge to reef threat to human and natural communities in the Hawaiian Islands, with impacts to natural and cultural resources and ecoystem services. Fire regimes in Hawaii have shifted from very infrequent wildfire occurrence prior to human arrival to greatly increased frequency, intensity, and size over the past 100+ years, almost all of which is driven by anthropogenic ignitions and wildland fuels associated with invasive species, particularly grasses. Recent fire science has greatly increased understanding of contemporary drivers of fire in Hawaii; however, the social dimensions and historical perspectives from Hawaiian language primary sources have not been integrated into synthetic understanding...
thumbnail
We developed a screening system to identify introduced plant species that are likely to increase wildfire risk, using the Hawaiian Islands to test the system and illustrate how the system can be applied to inform management decisions. Expert-based fire risk scores derived from field experiences with 49 invasive species in Hawai′i were used to train a machine learning model that predicts expert fire risk scores from among 21 plant traits obtained from literature and databases. The model revealed that just four variables can identify species categorized as higher fire risk by experts with 90% accuracy, while low risk species were identified with 79% accuracy. We then used the predictive model to screen 365 naturalized...


    map background search result map search result map Milford Flat Fire—Data Soil Physical and Hydraulic Properties in the Area Affected by the 2011 Las Conchas Fire in New Mexico Silverado California Thermoluminescence Data Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Fourmile Canyon Wildfire Longitudinal Profile Data Fire Risk Scores from Predictive Model Based on Flammability and Fire Ecology of Non-Native Hawaiian Plants from 2020-2021 Selected Hawaiian Language Newspaper Articles Relating to Wildfires in 1877 and 1901 Fourmile Canyon Wildfire Longitudinal Profile Data Soil Physical and Hydraulic Properties in the Area Affected by the 2011 Las Conchas Fire in New Mexico Silverado California Thermoluminescence Data Selected Hawaiian Language Newspaper Articles Relating to Wildfires in 1877 and 1901 Fire Risk Scores from Predictive Model Based on Flammability and Fire Ecology of Non-Native Hawaiian Plants from 2020-2021