Skip to main content
Advanced Search

Filters: Tags: Wildfire (X) > Types: Map Service (X)

78 results (32ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Burn probability (BP) raster dataset predicted for the 2080-2100 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 6 (FIL6) with flame lengths in the range of 3.7-15 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Burn probability (BP) for Fireline Intensity Class 2 (FIL2) with flame lengths in the range of 0.6-1.2 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 5 (FIL5) with flame lengths in the range of 2.4-3.7 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
In Alaska, recent research has identified particular areas of the state where both a lack of soil moisture and warming temperatures increase the likelihood of wildfire. While this is an important finding, this previous research did not take into account the important role that melting snow, ice, and frozen ground (permafrost) play in replenshing soil moisture in the spring and summer months. This project will address this gap in the characterization of fire risk using the newly developed monthly water balance model (MWBM). The MWBM takes into account rain, snow, snowmelt, glacier ice melt, and the permafrost layer to better calculate soil moisture replenishment and the amount of moisture that is lost to the atmosphere...
thumbnail
Wildfire and fuel treatment locations for the USFWS Pacific Southwest Region (California, Nevada, Klamath Basin OR) extracted from the Fire Management Information System (FMIS) on October 23, 2015, for fiscal years 1980-2015.
thumbnail
Conditional Flame Length (CFL) is an estimate of the mean flame lengths for each pixel, and was predicted for the 2050-2070 period in the Rio Grande area using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway. CFL...
thumbnail
Fire type predicted for the 2020-2040 period in the Rio Grande area with five classes: 1) shrub vegetation with torching flames; 2) shrub vegetation without torching flames; 3) forest with torching flames; 4) forest without torching flames; 5) grass or non-vegetation. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model...
thumbnail
Burn probability (BP) raster dataset predicted for the 2020-2040 period in the Rio Grande area was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5 Representative Concentration Pathway.
thumbnail
Burn probability (BP) for Fireline Intensity Class 1 (FIL1) with flame lengths in the range of 0-0.6 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...
thumbnail
Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. This dataset presents projections of historic and future fire probability for the southcentral U.S. using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM, Guyette et al., 2012). Climate data from 1900-1929 and projected climate data for 2040-2069 and 2070-2099 were used as model inputs to the Physical Chemistry Fire Frequency Model (Guyette et al. 2012) to estimate fire probability. Baseline and future time period data are from three global climate models (GCMs): CGCM, GFDL, and HadCM3. The nine associated data sets (tiffs) represent estimated change in mean fire probability...
thumbnail
This data release includes time-series data from a monitoring site located in a small drainage basin in the Arroyo Seco watershed in Los Angeles County, CA, USA (N3788964 E389956, UTM Zone 11, NAD83). The site was established after the 2009 Station Fire and recorded a series debris flows in the first winter after the fire. The data include three types of time-series: (1) 1-minute time series of rainfall, soil water content, channel bed pore pressure and temperature, and flow stage recorded by radar and laser distance meters (ArroyoSecoContinuous.csv); (2) 10-Hz time series of flow stage recorded by the laser distance meter during rain storms (ArroyoSecoStormLaser.csv), and (3) 2-second time series of rainfall and...
thumbnail
Fire type predicted for the 2080-2100 period in the Rio Grande area with five classes: 1) shrub vegetation with torching flames; 2) shrub vegetation without torching flames; 3) forest with torching flames; 4) forest without torching flames; 5) grass or non-vegetation. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model...
thumbnail
This map shows areas that have experienced fire between 1999 and 2010, including fire severity information where available. Determination of "change" due to fire is not possible due to the lack of highly accurate pre- and post-fire maps of vegetation conditions, and the wide range of possible interpretations of what constitutes a change. Instead, the focus was placed on mapping the location of fires and severity; the overall likelihood of significant change in short term vegetation conditions increases with fire severity.
thumbnail
FY2013The increase in large wildfires at a time when habitat for Greater Sage Grouse and other species dependent on big sagebrush has also increased has led to substantial needs for big sagebrush seeds. Significant decisions on which sagebrush seed to use and on management treatments that affect competing herb layers on the same restoration sites affect the trajectory of habitat.This project will evaluate how seed source, specifically genotype and climate-of-origin, interact with landscape-scale and replicated treatments (fencing, herbicide application, mowing, and seeding).
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
thumbnail
Burn probability (BP) for Fireline Intensity Class 4 (FIL4) with flame lengths in the range of 1.8-2.4 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 3 (FIL3) with flame lengths in the range of 1.2-1.8 m predicted for the 2080-2100 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the...
thumbnail
Burn probability (BP) for Fireline Intensity Class 1 (FIL1) with flame lengths in the range of 0-0.6 m predicted for the 2050-2070 period in the Rio Grande area. This raster dataset was generated using: 1) data developed from the 2014 Fire Program Analysis (FPA) system; 2) geospatial Fire Simulation (FSim) system developed by the US Forest Service Missoula Fire Sciences Laboratory to estimate probabilistic components of wildfire risk (Finney et al. 2011); and 3) climate predictions developed using the Multivariate Adaptive Constructed Analogs (MACA) method (Abatzoglou and Brown 2011) which downscaled model output from the GFDL-ESM-2m global climate model of the Coupled Model Inter-Comparison Project 5 for the 8.5...


map background search result map search result map Effects of Genotype and Management Treatments of Native and Invasive Herbs on Success of Sagebrush Restoration Colorado Plateau REA MQ E1: Where are the areas that have been changed by wildfire between 1999 and 2009? Burn Probability for Fireline Intensity Class 1, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 3, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area Conditional Flame Length predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2020 to 2040 for Rio Grande study area Fire type predicted for 2080 to 2100 for Rio Grande study area Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015 Improving Characterizations of Future Wildfire Risk in Alaska Post-wildfire debris-flow monitoring data, Arroyo Seco, 2009 Station Fire, Los Angeles County, California, November 2009 to March 2010. Fire probability for 1900-1929 using GFDL baseline climate values Burn Probability for Fireline Intensity Class 1, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 1, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 2, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 3, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2050 to 2070 for Rio Grande study area Burn Probability for Fireline Intensity Class 4, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 5, predicted for 2080 to 2100 for Rio Grande study area Burn Probability for Fireline Intensity Class 6, predicted for 2080 to 2100 for Rio Grande study area Conditional Flame Length predicted for 2050 to 2070 for Rio Grande study area Fire type predicted for 2020 to 2040 for Rio Grande study area Fire type predicted for 2080 to 2100 for Rio Grande study area Burn Probability predicted for 2020 to 2040 for Rio Grande study area Burn Probability predicted for 2080 to 2100 for Rio Grande study area Colorado Plateau REA MQ E1: Where are the areas that have been changed by wildfire between 1999 and 2009? Effects of Genotype and Management Treatments of Native and Invasive Herbs on Success of Sagebrush Restoration Fire probability for 1900-1929 using GFDL baseline climate values Region 8 FMIS Wildfire and Fuel Treatment Locations 1980-2015 Improving Characterizations of Future Wildfire Risk in Alaska