Skip to main content
Advanced Search

Filters: Tags: Wildfire (X) > partyWithName: Geosciences and Environmental Change Science Center (X)

11 results (10ms)   

View Results as: JSON ATOM CSV
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in dense time series of Landsat image stacks to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Outputs of the BAECV algorithm consist of pixel-level burn probabilities for each Landsat scene, and annual burn probability, burn classification, and burn date composites. These products were generated for the conterminous United States for 1984 through 2015. These data are also available for download at https://rmgsc.cr.usgs.gov/outgoing/baecv/BAECV_CONUS_v1.1_2017/...
thumbnail
Geospatial data were developed to characterize pre-fire biomass, burn severity, and biomass consumed for the Black Dragon Fire that burned in northern China in 1987. Pre-fire aboveground tree biomass (Mh/ha) raster data were derived by relating plot-level forest inventory data with pre-fire Landsat imagery from 1986 and 1987. Biomass data were generated for individual species: Dahurian larch (Larix gmelinii Rupr. Kuzen), white birch (Betula platyphylla Suk), aspen (Populus davidiana Dode and Populus suaveolens Fischer), and Mongolian Scots pine (Pinus sylvestris var. mongolica Litvinov). A raster layer of total aboveground tree biomass was also generated. Burned area was manually delineated using the normalized...
thumbnail
The U.S. Geological Survey (USGS) has developed and implemented an algorithm that identifies burned areas in temporally dense time series of Landsat Analysis Ready Data (ARD) scenes to produce the Landsat Burned Area Products. The algorithm uses predictors derived from individual ARD Landsat scenes, lagged reference conditions, and change metrics between the scene and reference conditions. Scene-level products include pixel-level burn probability (BP) and burn classification (BC) images corresponding to each Landsat image in the ARD time series. Annual composite products are also available by summarizing the scene-level products. Prior to generating annual composites, individual scenes that had > 0.010 burned proportion...
thumbnail
Interpretations of post-fire condition and rates of vegetation recovery can influence management priorities, actions, and perception of latent risks from landslides and floods. In this study, we used the Waldo Canyon fire (2012, Colorado Springs, Colorado, USA) as a case study to explore how a time series (2011-2016) of high-resolution images can be used to delineate burn extent and severity, as well as quantify post-fire vegetation recovery. We applied an object-based approach to map burn severity and vegetation recovery using Worldview-2, 3, and QuickBird-2 imagery. The burned area was classified as 51% high, 20% moderate and 29% low burn-severity. Across the burn extent, the shrub cover class showed a rapid recovery,...
thumbnail
This data release provides output produced by a statistical, aridity threshold fire model for 11 extensively forested ecoregions in the western United States. We identified thresholds in fire-season climate water deficit (FSCWD) that distinguish years with limited, moderate, and extensive area burned for each ecoregion. We developed a new area burned model using these relationships and used it to simulate annual area burned using historical climate from 1980 - 2020 and output from global climate models (GCMs) from 1980 - 2099. The data release includes a comparison of mean annual FSCWD for 13 GCMs that we used to select five GCMs that bracket the range of conditions projected for the RCP 8.5 emissions scenario....
This data release provides inputs needed to run the LANDIS-II landscape change model, NECN and Base Fire extensions for the Greater Yellowstone Ecosystem (GYE), USA, and simulation results that underlie figures and analysis in the accompanying publication. We ran LANDIS-II simulations for 112 years, from 1988-2100, using interpolated weather station data for 1988-2015 and downscaled output from 5 general circulation models (GCMs) for 2016-2100. We also included a control future scenario with years drawn from interpolated weather station data from 1980-2015. Model inputs include raster maps (250 × 250 m grid cells) of climate regions and tables of monthly temperature and precipitation for each climate region. We...
thumbnail
Post-fire shifts in vegetation composition will have broad ecological impacts. However, information characterizing post-fire recovery patterns and their drivers are lacking over large spatial extents. In this analysis we used Landsat imagery collected when snow cover (SCS) was present, in combination with growing season (GS) imagery, to distinguish evergreen vegetation from deciduous vegetation. We sought to (1) characterize patterns in the rate of post-fire, dual season Normalized Difference Vegetation Index (NDVI) across the region, (2) relate remotely sensed patterns to field-measured patterns of re-vegetation, and (3) identify seasonally-specific drivers of post-fire rates of NDVI recovery. Rates of post-fire...
thumbnail
Complete and accurate burned area map data are needed to document spatial and temporal patterns of fires, to quantify their drivers, and to assess the impacts on human and natural systems. In this study, we developed the Landsat Burned Area (BA) algorithm, an update from the Landsat Burned Area Essential Climate Variable (BAECV) algorithm. We present the BA algorithm and products, changes relative to the BAECV algorithm and products, and updated validation metrics. We also present spatial and temporal patterns of burned area across the conterminous U.S. and a comparison with other burned area datasets. The BA algorithm identifies burned areas in analysis ready data (ARD) time-series of Landsat imagery from 1984...
thumbnail
The Department of the Interior (DOI) Office of Wildland Fire and USGS created the The Wildfire Hazard and Risk Assessment Inventory to meet the Monitoring, Maintenance, and Treatment Plan requirements under the Bipartisan Infrastructure Law (BIL). It provides an inventory of key national, regional, and state wildfire risk and fire hazard assessments useful for understanding different characterizations of fire risk. Some of the assessments may be useful for communicating contributions toward risk reduction of treatments funded by DOI, including investments under BIL. For each assessment, the inventory provides a description and information about the spatial extent, resolution, fire modeling approach, values considered...
This data release provides inputs needed to run the LANDIS PRO forest landscape model and the LINKAGES 3.0 ecosystem process model for the area burned by the Black Dragon Fire in northeast China in 1987, and simulation results that underlie figures and analysis in the accompanying publication. The data release includes the fire perimeter of Great Dragon Fire; input data for LINKAGES including soils, landtype, and climate data; initial conditions of stands in the study area before the Great Dragon Fire; and maps of LANDIS PRO output for each model grid cell including total trees, total biomass (Mg/ha), and tree density (trees/ha) in two-year timesteps.
thumbnail
This data release provides inputs needed to run the LANDIS PRO forest landscape model and the LINKAGES 3.0 ecosystem process model for the temperate-boreal ecotone Great Xing’an Mountains of northeastern China, and simulation results that underlie figures and analysis in the accompanying publication. The study compared the impacts of small and large fires on vegetation dynamics. The data release includes input data for LINKAGES including soils, landtype, and climate data; initial conditions of stands in the study area for LANDIS PRO; and maps of LANDIS PRO output for each model grid cell including total trees, total biomass (Mg/ha), and tree density (trees/ha) in ten-year timesteps. Output for four climate and fire...


    map background search result map search result map Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) Data Release for the validation of the USGS Landsat Burned Area Product across the conterminous U.S. (ver. 2.0, May 2020) Data release for Time series of high-resolution images enhances efforts to monitor post-fire condition and recovery, Waldo Canyon fire, Colorado, USA Pre-fire biomass, burn severity, biomass consumption, and fire perimeter data for the 1987 Black Dragon Fire in China Landscape inputs and simulation output for the LANDIS-II model in the Greater Yellowstone Ecosystem Data release for tracking rates of post-fire conifer regeneration distinct from deciduous vegetation recovery across the western U.S. Data release for: Spatially explicit reconstruction of post-megafire forest recovery through landscape modeling Data inputs and outputs for simulations of species distributions in response to future fire size and climate change in the boreal-temperate ecotone of northeastern China Simulated annual area burned for eleven extensively forested ecoregions in the western United States for 1980 - 2099 The Wildfire Hazard and Risk Assessment Inventory The Landsat Collection 2 Burned Area Products for the conterminous United States (ver. 2.0, April 2024) Data release for Time series of high-resolution images enhances efforts to monitor post-fire condition and recovery, Waldo Canyon fire, Colorado, USA Pre-fire biomass, burn severity, biomass consumption, and fire perimeter data for the 1987 Black Dragon Fire in China Data inputs and outputs for simulations of species distributions in response to future fire size and climate change in the boreal-temperate ecotone of northeastern China Landscape inputs and simulation output for the LANDIS-II model in the Greater Yellowstone Ecosystem Data release for: Spatially explicit reconstruction of post-megafire forest recovery through landscape modeling Data release for tracking rates of post-fire conifer regeneration distinct from deciduous vegetation recovery across the western U.S. Simulated annual area burned for eleven extensively forested ecoregions in the western United States for 1980 - 2099 Data Release for the validation of the USGS Landsat Burned Area Product across the conterminous U.S. (ver. 2.0, May 2020) The Landsat Collection 2 Burned Area Products for the conterminous United States (ver. 2.0, April 2024) Landsat Burned Area Essential Climate Variable products for the conterminous United States (1984 - 2015) The Wildfire Hazard and Risk Assessment Inventory