Skip to main content
Advanced Search

Filters: Tags: Wisconsin (X) > Types: OGC WFS Layer (X)

213 results (46ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This dataset provides shapefile outlines of the 7,150 lakes that had temperature modeled as part of this study. The format is a shapefile for all lakes combined (.shp, .shx, .dbf, and .prj files). A csv file of lake metadata is also included. This dataset is part of a larger data release of lake temperature model inputs and outputs for 7,150 lakes in the U.S. states of Minnesota and Wisconsin (http://dx.doi.org/10.5066/P9CA6XP8).
thumbnail
The Critical Minerals in Archived Mine Samples Database (CMDB) contains chemistry and geologic information for historic ore and ore-related rock samples from mineral deposits in the United States. In addition, the database contains samples from archetypal deposits from 27 other countries in North America, South America, Asia, Africa and Europe. Samples were obtained from archived ore collections under the U.S. Geological Survey's project titled "Quick Assessment of Rare and Critical Metals in Ore Deposits: A National Assessment" (2008 to 2013) in an effort to begin an assessment of the Nations' previously mined ore deposits for critical minerals. Mineralized and altered rock samples were provided by the Colorado...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Alaska, Argentina, Arizona, Arkansas, Australia, All tags...
thumbnail
Near-surface site characteristics are critical for accurately modeling ground motion, which in turn influences seismic hazard analysis and design of critical infrastructure. Currently, there are many strong motion accelerometers within the Advanced National Seismic System (ANSS) that are missing this information. We use a Geographic Information Systems (GIS) based framework to intersect the site coordinates of approximately 5,500 ANSS accelerometers located throughout the United States and its territories with geology and velocity information. We consider: (1) surficial geology from digitized geologic maps (Horton, 2017; Wilson et al., 2015; Sherrod et al., 2007; Bawiec, 1999; Saucedo, 2005; Bedrossian et al., 2012;...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ANSS, Alabama, American Samoa, Arizona, Arkansas, All tags...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
Synopsis: This article outlines how wetlands can significantly reduce flooding in the Upper Mississippi watershed. The authors first provide a historical context by estimating the original and lost wetland storage capacities of the Upper Mississippi and Missouri River Basins. Historically, about 10% of the basin would have been classified as wetland in 1780. By 1980, wetland acreage had been reduced to only 4% of the basin, representing about 26 million acres of wetlands eliminated since 1780. The area of wetland restoration required to reduce the risk of future flooding adequately was estimated based on the total amount of excess floodwater beyond bank-full discharge that passed through the City of St. Louis during...
thumbnail
This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the United States and its Territories. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Alabama, Alaska, Arizona, All tags...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
thumbnail
This data set consists of monthly averages of soil and litter properties. Rows are grouped in the following order: year, month, vegetation type, plot ID. Within a single month five plots were sampled within each of the 2 vegetation types (10 plots total). Columns F+ represent individual measurements.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the regeneration of floodplain forest. This dataset uses lidar derivatives to identify forest canopy gaps along select portions of the Mississippi River and Illinois River. USACE will use this dataset to select field sites to collect data in forest canopy gaps. This will also serve as the baseline for long-term forest canopy gap study.
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. Area coverage for this data set is the Upper Mississippi River between Minneapolis, MN and Cairo, IL, and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
thumbnail
River valley boundary extents were generated for select large river floodplains of the Upper Midwest, United States. These polygons were delineated using a method that incorporated interpolating a water surface elevation that completely over-topped water-control structures within the valley such as levees, flood walls, and roadways. The intersection of this derived water surface and land elevation at the outermost edge of the floodplain was used to delineate the approximate extent of the river valley boundary. We used best professional judgment to approximate this water surface elevation.
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
Aerial imagery for the Upper Mississippi River System (UMRS) Navigational Pool 5 drawdown follow-up was collected in true color (TC) in August of 2015 at 6”/pixel using a mapping-grade Applanix DSS 439 digital aerial camera. All TC aerial images were orthorectified, mosaicked, and compressed into a JPEG2000-format image. The TC aerial images were interpreted and automated using a genus-level 150-class Long Term Resource Monitoring (LTRM) vegetation classification. The 2015 vegetation database was prepared by or under the supervision of competent and trained professional staff using documented standard operated procedures.
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
This dataset represents results from this study attributed to the NHDPlus V2 catchments. Changes in climate occurring throughout the Mississippi River Basin are expected to lead to additional impacts in stream habitats and fish assemblages in multiple ways, including changing changing thermal properties and flow regimes. To manage streams for current impacts and future changes, managers need region-wide information for decision-making and developing proactive management strategies. Our project provides a suite of climate metrics that have been found to be relevant to the distribution and population structure of aquatic organisms in freshwater stream networks. These results provide natural resource managers, decision-makers,...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Academics & scientific researchers, Alabama, Arkansas, Colorado, Complete, All tags...
thumbnail
This dataset, termed "GAGES II", an acronym for Geospatial Attributes of Gages for Evaluating Streamflow, version II, provides geospatial data and classifications for 9,322 stream gages maintained by the U.S. Geological Survey (USGS). It is an update to the original GAGES, which was published as a Data Paper on the journal Ecology's website (Falcone and others, 2010b) in 2010. The GAGES II dataset consists of gages which have had either 20+ complete years (not necessarily continuous) of discharge record since 1950, or are currently active, as of water year 2009, and whose watersheds lie within the United States, including Alaska, Hawaii, and Puerto Rico. Reference gages were identified based on indicators that they...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Alabama, Alaska, All 50 states, Arizona, Arkansas, All tags...


map background search result map search result map GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow Flood reduction through wetand restoration: the Upper Mississippi River Basin as a case history. UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Marseillies Reach UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 13 2015 Pool 5 Drawdown Land Cover/Land Use Data UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 08 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 05a Ports of the United States National Wetlands Inventory - Wetlands Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 Data: Current and future CNRM CM3 climate data for NHD v2 catchments within the Mississippi River Basin Process-based water temperature predictions in the Midwest US: 1 Spatial data (GIS polygons for 7,150 lakes) Global Geochemical Database for Critical Minerals in Archived Mine Samples Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River River Valley Boundaries Generated for Select Large Rivers of the Upper Midwest, United States UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 2015 Pool 5 Drawdown Land Cover/Land Use Data UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 05a Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data Forest Canopy Gaps Identified by Lidar for Navigational Pool 8 of the Mississippi River UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 08 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 12 UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 UMRS LTRMP 2010/11 LCU Mapping -- Mississippi River Navigation Pool 13 National Wetlands Inventory - Wetlands Flood reduction through wetand restoration: the Upper Mississippi River Basin as a case history. Process-based water temperature predictions in the Midwest US: 1 Spatial data (GIS polygons for 7,150 lakes) River Valley Boundaries Generated for Select Large Rivers of the Upper Midwest, United States Data: Current and future CNRM CM3 climate data for NHD v2 catchments within the Mississippi River Basin Ports of the United States Compilation of Geologic and Seismic Velocity Characteristics at Advanced National Seismic System Strong Motion Accelerometer Sites GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow Global Geochemical Database for Critical Minerals in Archived Mine Samples