Skip to main content
Advanced Search

Filters: Tags: ammonia (X)

45 results (8ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Uintah County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Daggett County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
The datasets provided here are the input data used to run the Seasonal Kendall Trend (SKT) tests and Weighted Regressions on Time, Discharge, and Season (WRTDS) models. SKT tests use "annualSamplingFreqs_allSites.csv" and "wqData_screenedSitesAll.csv" which includes, for all site-parameter combinations, information on annual sampling frequencies and the screened water-quality data, respectively. The WRTDS models use "DRB.wqdata.20200521.csv", "DRB.flow.20200610.zip", and "DRB.info.20200521.csv" for calibration which includes, for all site-parameter combinations, the water-quality data, streamflow data (as separate .csv files for each site), model specifications and site information, respectively. The multisource...
thumbnail
We investigated whether the length of time fire chemical weathers on a terrestrial substrate before mixing into aquatic environments alters the chemical’s toxicity when encountered by juvenile rainbow trout. We also looked at whether the type of substrate where the chemical is applied affects its toxicity to juvenile rainbow trout after mixing into water. Two fire chemicals (Phos Chek LC95A-R and Phos Chek MVP-Fx) were applied to four substrate media (low organic content soil, high organic content soil, duff, and gravel) and allowed to age on the substrate for 7, 14, 28 or 56 days. At the end of the assigned weathering period, 96-hour assays were conducted by adding water to the dosed substrate and stocking each...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Davis County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Grand County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Tooele County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Wayne County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
Although the variation in natural 15N abundance in plants and soils is well characterized, mechanisms controlling N isotopic composition of organic matter are still poorly understood. The primary goal of this study was to examine the role of NH3 volatilization from ungulate urine patches in determining 15N abundance in grassland plants and soil in Yellowstone National Park. We additionally used isotopic measurements to explore the pathways that plants in urine patches take up N. Plant, soil, and volatilized NH3d15N were measured on grassland plots for 10 days following the addition of simulated urine. Simulated urine increased 15N of roots and soil and reduced 15N of shoots. Soil enrichment was due to the volatilization...
thumbnail
Reactive nitrogen is transported from the atmosphere to the landscape as wet and dry deposition that contributes to annual nitrogen loads to the Chesapeake Bay. Estimates of atmospheric inorganic nitrogen deposition to the Chesapeake Bay watershed during 1950 to 2050 are presented, and are based on field measurements, model simulations, statistical relations, and surrogate constituents used for estimates. Wet atmospheric nitrogen deposition has generally been quantified from weekly precipitation sample collections, whereas dry atmospheric nitrogen deposition has been simulated by a model at an hourly time step.
Survival endpoints for juvenile rainbow trout (Oncorhynchus mykiss) and fathead minnows (Pimephales promelas) in response to exposure to wildland firefighting chemicals. Exposures were either attenuated or pulsed. For attenuated exposures, chemical treatment was applied at the beginning of the exposure and control water was added for the duration of the assay so chemical concentration gradually decreased over time. In pulsed exposures, organisms were exposed to chemical treatments for a set period of time and then moved to chambers without chemical applied. This data set includes data from seven assays and include treatments under various exposure conditions such as different background water hardness, chemical...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Boxelder County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
This data release contains the U.S. salient statistics and world production data extracted from the NITROGEN (FIXED)-AMMONIA data sheet of the USGS Mineral Commodity Summaries 2024.
thumbnail
In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project. One of the major goals of the NAWQA project was to determine how river water quality has changed over time. To support that goal, long-term consistent and comparable monitoring has been conducted by the USGS on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS and other Federal, State, and local agencies also have collected long-term water-quality data to support their own assessments of changing water quality. In 2017, data from these multiple sources were combined to support one of the most comprehensive assessments...
thumbnail
The datasets provided here are the output from the Seasonal Kendall Trend (SKT) test and Weighted Regressions on Time, Discharge, and Season (WRTDS) model that characterize changes in water quality in rivers and streams across the Delaware River Basin. SKT results are compiled in "skt_out.csv" for all combinations of site, water-quality parameter, and trend period. WRTDS results are compiled in four datasets. If unspecified, generalized flow normalization (GFN) results are reported. Stationary flow normalization (SFN) results are indicated in the datasets. "wrtds_out_annResults.csv" contains the annual estimates of mean concentration and load and GFN and SFN estimates by site and parameter for the entire calibration...
thumbnail
This U.S. Geological Survey (USGS) Data Release is focused on the geochemistry of wastewater (including flowback and produced water) samples, co-produced with natural gas, collected from the Marcellus Shale Energy and Environment Laboratory (MSEEL) site. MSEEL is a long-term field site and laboratory at the Northeast Natural Energy LLC (NNE) production facility, adjacent to the Monongahela River, located in western Monongalia County, West Virginia, USA. NNE began drilling two horizontal production wells, MIP (Morgantown Industrial Park) -5H and MIP-3H, in the Marcellus Shale in 2014. The wells were completed in December 2015. Large volumes of wastewater are generated with natural gas production. These wastewaters...
Categories: Data, Data Release - Revised; Tags: MSEEL, Marcellus Shale Energy and Environment Laboratory, Marcellus Shale, Morgantown, USGS Science Data Catalog (SDC), alkalinity, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Garfield County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Cache County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Iron County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/


map background search result map search result map Estimates of atmospheric inorganic nitrogen deposition to the Chesapeake Bay watershed, 1950-2050 Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (input data) Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (output data) Geochemistry Data for Wastewater Samples Collected at a Separator Tank and from an On-Site Storage Tank at the Marcellus Shale Energy and Environment Laboratory (MSEEL) 2015-2019, Morgantown Industrial Park (MIP), West Virginia (ver. 2.0, May 2023) Water-quality and streamflow datasets used in Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2017 (input data) Biological and chemical data from attenuated and pulsed exposures of fire chemical to fish Specific Water Quality Sites for Boxelder County, Utah Specific Water Quality Sites for Cache County, Utah Specific Water Quality Sites for Daggett County, Utah Specific Water Quality Sites for Davis County, Utah Specific Water Quality Sites for Garfield County, Utah Specific Water Quality Sites for Grand County, Utah Specific Water Quality Sites for Iron County, Utah Specific Water Quality Sites for Tooele County, Utah Specific Water Quality Sites for Uintah County, Utah Specific Water Quality Sites for Wayne County, Utah Water quality and survival data for 96 hour bioassays conducted near the Blacktail Creek wastewater spill, North Dakota, 2015-17 Water chemistry and biological data of Rainbow Trout following aquatic exposure to weathered wildland fire retardants after application to substrate Geochemistry Data for Wastewater Samples Collected at a Separator Tank and from an On-Site Storage Tank at the Marcellus Shale Energy and Environment Laboratory (MSEEL) 2015-2019, Morgantown Industrial Park (MIP), West Virginia (ver. 2.0, May 2023) Biological and chemical data from attenuated and pulsed exposures of fire chemical to fish Water chemistry and biological data of Rainbow Trout following aquatic exposure to weathered wildland fire retardants after application to substrate Specific Water Quality Sites for Davis County, Utah Specific Water Quality Sites for Cache County, Utah Specific Water Quality Sites for Iron County, Utah Specific Water Quality Sites for Wayne County, Utah Specific Water Quality Sites for Daggett County, Utah Specific Water Quality Sites for Grand County, Utah Specific Water Quality Sites for Tooele County, Utah Specific Water Quality Sites for Boxelder County, Utah Specific Water Quality Sites for Uintah County, Utah Specific Water Quality Sites for Garfield County, Utah Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (input data) Water-quality trends for rivers and streams in the Delaware River Basin using Weighted Regressions on Time, Discharge, and Season (WRTDS) models, Seasonal Kendall Trend (SKT) tests, and multisource data, Water Year 1978-2018 (output data) Estimates of atmospheric inorganic nitrogen deposition to the Chesapeake Bay watershed, 1950-2050 Water-quality and streamflow datasets used in Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2017 (input data)