Skip to main content
Advanced Search

Filters: Tags: climate (X) > Categories: Project (X)

38 results (170ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Concerns about the influence of climate change on biota have emerged over the past decade, and responses in species populations and distribution patterns have already been documented (Parmesan 1996, Thomas and Lennon 1999). Current climates and communities will not simply migrate, but rather will re-form in novel ways over time (Fox 2007; Hunter et al. 1988; Williams and Jackson 2007). Due to the uncertainty of future climatic patterns and species responses, enduring features of the landscape (geophysical settings) are appropriate targets of assessment, planning, and conservation (Anderson and Ferree 2010, Beier and Brost 2010, Brost and Beier 2012; Hunter et al. 1988). Only recently have enduring features been...
thumbnail
Our project focuses on understanding patterns and causes of recent population declines in the Haleakala silversword that are associated with decreasing precipitation, increasing temperature, and related climate changes in Hawaii’s high-elevation ecosystems. The Haleakala silversword is an ideal taxon with which to assess impacts from climate change. It forms the foundation of a diverse alpine community and likely reflects wider ecological changes; it is already exhibiting patterns of mortality consistent with an upslope shifting distribution; and its high visibility and symbolic status make it unmatched in educational potential. Building on extensive research infrastructure, we propose to collect the demographic...
thumbnail
In Alaska, recent research has identified particular areas of the state where both a lack of soil moisture and warming temperatures increase the likelihood of wildfire. While this is an important finding, this previous research did not take into account the important role that melting snow, ice, and frozen ground (permafrost) play in replenshing soil moisture in the spring and summer months. This project will address this gap in the characterization of fire risk using the newly developed monthly water balance model (MWBM). The MWBM takes into account rain, snow, snowmelt, glacier ice melt, and the permafrost layer to better calculate soil moisture replenishment and the amount of moisture that is lost to the atmosphere...
thumbnail
Tropical forests contain > 50% of the world’s known species (Heywood 1995), 55% of global forest biomass (Pan et al. 2011), and exchange more carbon (C), water and energy with the atmosphere than any other ecosystem type (e.g., Saugier et al. 2001). Despite their importance, there is more uncertainty associated with predictions of how tropical forests will respond to warming than for any other biome (Randerson et al. 2009). This uncertainty is of global concern due to the large quantity of C cycled by these forests and the high potential for biodiversity loss. Given the importance of tropical forests, decision makers and land managers around the globe need increased predictive capacity regarding how tropical forests...
thumbnail
Climate change is already affecting ecosystems, and will likely trigger significant and permanent changes in both ecological and human communities. Such transformations are already occurring in the Arctic region of Alaska, where temperatures are warming at twice the global average and causing some ecosystems to transition to new states. Arctic warming has led to coastal erosion that has forced human communities to relocate and a loss of sea ice that has forced marine mammals, such as polar bears and walrus, to adapt to a more terrestrial mode of living. Meanwhile, in the Great Plains of the U.S., past interactions between land and water use during the Dust Bowl and recent high rates of depletion of the Ogallala...
thumbnail
FY2014There is increasing interest in climate change adaptation, particularly since the release of the Presidents Executive Order on Climate Preparedness in November, 2013, yet many field staff remain uncertain how to put adaptation into practice. Our goal with this project is to bridge the gap between the wealth of high-level climate adaptation guidance and the field staff who carry out specific regulatory processes, specifically Habitat Conservation Plans. Following best practices from the literature on linking science and management, we will begin with a focus on what people do rather than on the climate science. We will map the current HCP development and approval process in Region 8, identify where and how...
thumbnail
Researchers with U.S. Geological Survey Water Science Centers in Iowa, Kansas and Massachusetts collaborated to conduct a comprehensive literature search of both published and ongoing research (2000-present) that sheds light on the interactions between climate change, agriculture and water quality across the combined geographies of the Eastern Tallgrass Prairie and Big Rivers LCC and neighboring Upper Midwest and Great Lakes LCC. Project investigators compiled the information in a resource library by geographic location, providing an organized structure for future examination of all research related to interactions between climate change, agriculture and water quality in these two regions.
thumbnail
FY2014There is increasing interest in climate change adaptation, particularly since the release of the Presidents Executive Order on Climate Preparedness in November, 2013, yet many field staff remain uncertain how to put adaptation into practice. Our goal with this project is to bridge the gap between the wealth of high-level climate adaptation guidance and the field staff who carry out specific regulatory processes, specifically Habitat Conservation Plans. Following best practices from the literature on linking science and management, we will begin with a focus on what people do rather than on the climate science. We will map the current HCP development and approval process in Region 8, identify where and how...
thumbnail
One of the greatest ecological, social and economic issues of the day is the problem of climate change. Increasing levels of carbon dioxide (CO2) in the atmosphere are increasing global temperatures. Much of the CO2 dissolves in the ocean, creating more acidic conditions and leading to a process known as ocean acidification (OA). Higher temperatures and increased levels of CO2 operating independently are known to be detrimental to corals, but little is known about their effect when operating in unison. Irradiance has a great influence on coral calcification rates and can interact with higher temperature and increased OA to an unknown extent. Therefore, experiments were performed in continuous flow mesocosms under...
thumbnail
This project links climate, hydrological, and ecological changes over the next 30 years in a Great Basin watershed. In recent years, climate variability on annual and decadal time scales has been recognized as greater than commonly perceived with increasing impacts on ecosystems and available water resources. Changes in vegetation distribution, composition and productivity resulting from climate change affect plant water use, which in turn can alter stream flow, groundwater and eventually available water resources. To better understand these links, project researchers implemented two computer-based numeric models in the Cleve Creek watershed in the Schell Creek Range, east of Ely, Nevada. The application of the...
Categories: Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: 2013, CASC, Cleve Creek, Climate, Completed, All tags...
thumbnail
To understand potential climate change impacts on ecosystems, water resources, and numerous other natural and managed resources, climate change data and projections must be downscaled from coarse global climate models to much finer resolutions and more applicable formats. This project conducted comparative analyses to better understand the accuracy and properties of these downscaled climate simulations and climate-change projections. Interpretation, guidance and evaluation, including measures of uncertainties, strengths and weaknesses of the different methodologies for each simulation, can enable potential users with the necessary information to select and apply the models.
thumbnail
Water cycling and availability exert dominant control over ecological processes and the sustainability of ecosystem services in water - limited ecosystems. Consequently, dryland ecosystems have the potential to be dramatically impacted by hydrologic alterations emerging from global change, notably increasing temperature and altered precipitation patterns. In addition, the possibility of directly manipulating global solar radiation by augmenting stratospheric SO2 is receiving increasing attention as CO2 emissions continue to increase - these manipulations are anticipated to decrease precipitation, a change that may be as influential as temperature increases in dryland ecosystems. We propose to integrate a proven...
thumbnail
Groundwater withdrawals in the western US are a critical component of the water resources strategy for the region. Climate change already may be substantially altering recharge into groundwater systems; however, the quantity and direction (increase or decrease) of changes are relatively unknown as most climate change assessments have focused on surface water systems. We propose to conduct a broad scale literature review followed by a synthesis of available data, analysis and simulations with available downscaled climate scenarios to understand how recharge in the western US might respond to plausible climatic shifts during the rest of the 21st Century. We will produce an estimated range of impacts on groundwater...
thumbnail
FY2014There is increasing interest in climate change adaptation, particularly since the release of the Presidents Executive Order on Climate Preparedness in November, 2013, yet many field staff remain uncertain how to put adaptation into practice. Our goal with this project is to bridge the gap between the wealth of high-level climate adaptation guidance and the field staff who carry out specific regulatory processes, specifically Habitat Conservation Plans. Following best practices from the literature on linking science and management, we will begin with a focus on what people do rather than on the climate science. We will map the current HCP development and approval process in Region 8, identify where and how...
thumbnail
We analyzed the chemical composition of wood produced by Māmane, a tropical tree growing in Hawai’i, in order to reconstruct changes in climate over the Hawaiian Islands. Specifically, we measured changes in the relative abundance of carbon and oxygen isotopes taken up by the trees during photosynthesis at high elevation sites on Mauna Kea. We found that these isotopes reflect the climatic conditions (precipitation and temperature) under which the trees lived, allowing us to reconstruct relative changes in climate extending back ~130 years. Our results indicate decadal-scale changes in precipitation that correlate well with large-scale atmospheric and ocean circulation patterns that dominate much of the Pacific....
thumbnail
Estimating species response to environmental change is a key challenge for ecologists and a core mission of the USGS. Effective forecasting of species response requires models that are detailed enough to capture critical processes and at the same time general enough to allow broad application. This tradeoff is difficult to reconcile with most existing methods. We propose to extend and combine existing models that operate at different scales and with different levels of data complexity into a modeling framework that will allow robust estimation of population response to environmental change across a species’ range. This integrated modeling is now possible with the increasing development and application of population...
thumbnail
FY2014There is increasing interest in climate change adaptation, particularly since the release of the Presidents Executive Order on Climate Preparedness in November, 2013, yet many field staff remain uncertain how to put adaptation into practice. Our goal with this project is to bridge the gap between the wealth of high-level climate adaptation guidance and the field staff who carry out specific regulatory processes, specifically Habitat Conservation Plans. Following best practices from the literature on linking science and management, we will begin with a focus on what people do rather than on the climate science. We will map the current HCP development and approval process in Region 8, identify where and how...
thumbnail
FY2014There is increasing interest in climate change adaptation, particularly since the release of the Presidents Executive Order on Climate Preparedness in November, 2013, yet many field staff remain uncertain how to put adaptation into practice. Our goal with this project is to bridge the gap between the wealth of high-level climate adaptation guidance and the field staff who carry out specific regulatory processes, specifically Habitat Conservation Plans. Following best practices from the literature on linking science and management, we will begin with a focus on what people do rather than on the climate science. We will map the current HCP development and approval process in Region 8, identify where and how...
thumbnail
In the tropics, ample freshwater is the primary resource supporting thriving human and ecological communities. In the Pacific Islands, many watersheds are threatened by climate change, urban encroachment, and invasion by water-demanding exotic plant species like strawberry guava (SG). To maintain an adequate freshwater supply, adaptive management strategies are needed to address these concerns while confronting operational barriers to implementation. We developed a prototype watershed decision support tool (WDST) that incorporated: (i) distributed hydrology modeling to quantify effects of climate change and SG invasion on freshwater yield; (ii) a decision support tool that linked potential changes in yield with...
thumbnail
The objective of this experimental research is to determine if genetic enrichment may enhance survival, growth, and adaptation of important native Hawaiian montane plant species to changing precipitation patterns by relocating conspecifics to more favorable climate regimes at higher elevation. We will collect the seeds of montane plants from low and high eevation sources, conduct outplanting trials in common locations along an elevation gradient, and monitor growth, survival, and vigor over a two_year period to evaluate a potential restoration strategy for mountain parklands of Mauna Kea, on the island of Hawaii.


map background search result map search result map Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Literature search on environmental affects of agricultural practices Reconstructing past Hawaiian precipitation using stable carbon isotope analysis of Māmane trees A Tool for Understanding Climate Change and Invasive Species Impacts on Watersheds Synergistic Impacts of Global Warming and Ocean Acidification on Coral Reefs Understanding how climate change is affecting Hawaii's high-elevation ecosystems: an assessment of the long-term viability of Haleakala silverswords and associated biological communities Facilitating Adaptation in Montane Plants to Changing Precipitation along an Elevation Gradient Adding Climate Smart Principles into Habitat Conservation Planning Improving Characterizations of Future Wildfire Risk in Alaska Summary and Initial Evaluation of Enduring Features Information for the Conterminous USA, with Evaluation of Potential Use for Ecoregion Assessment Adding Climate Smart Principles into Habitat Conservation Planning Adding Climate Smart Principles into Habitat Conservation Planning Adding Climate Smart Principles into Habitat Conservation Planning Adding Climate Smart Principles into Habitat Conservation Planning Adaptation Strategies in the Face of Climate-Driven Ecological Transformation: Case Studies from Arctic Alaska and the U.S. Great Plains Understanding and Projecting Changes in Climate, Hydrology, and Ecology in the Great Basin for the Next 30 Years Understanding how climate change is affecting Hawaii's high-elevation ecosystems: an assessment of the long-term viability of Haleakala silverswords and associated biological communities Facilitating Adaptation in Montane Plants to Changing Precipitation along an Elevation Gradient Reconstructing past Hawaiian precipitation using stable carbon isotope analysis of Māmane trees A Tool for Understanding Climate Change and Invasive Species Impacts on Watersheds Synergistic Impacts of Global Warming and Ocean Acidification on Coral Reefs Analysis of Downscaled Climate Simulations and Projections and Their Use in Decision Making for the Southwest Literature search on environmental affects of agricultural practices Adding Climate Smart Principles into Habitat Conservation Planning Adding Climate Smart Principles into Habitat Conservation Planning Adding Climate Smart Principles into Habitat Conservation Planning Adding Climate Smart Principles into Habitat Conservation Planning Adding Climate Smart Principles into Habitat Conservation Planning Summary and Initial Evaluation of Enduring Features Information for the Conterminous USA, with Evaluation of Potential Use for Ecoregion Assessment Improving Characterizations of Future Wildfire Risk in Alaska Adaptation Strategies in the Face of Climate-Driven Ecological Transformation: Case Studies from Arctic Alaska and the U.S. Great Plains