Skip to main content
Advanced Search

Filters: Tags: conservation (X) > Date Range: {"choice":"year"} (X) > Types: ArcGIS REST Map Service (X)

28 results (53ms)   

Filters
Date Types (for Date Range)
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Forest Retention Index classes for the southeastern United States at 2040 were processed using the Forest Retention Decision Tree and rendered on a 30-meter by 30-meter grid. The Forest Retention Index is used only for current forestland, identified using National Land Cover Database 2011. Many datasets were used as inputs for the Forest Retention Decision Tree, and they can be grouped into five broad categories: Protected, Tier 1 Priority, Tier 2 Priority, Threats to Forest Retention, and Socio-Economic Value of Forests. Protected datasets include Protected Areas Database-United States, National Conservation Easement Database, state-maintained databases, and private datasets volunteered by conservation partners....
thumbnail
In 2006, the Century Commission for a Sustainable Florida called for an identification of those lands and waters in the state that are critical to the conservation of Florida’s natural resources. In response, the Florida Natural Areas Inventory, University of Florida Center for Landscape Conservation Planning, and Florida Fish & Wildlife Conservation Commission collaborated to produce CLIP - the Critical Lands and Waters Identification Project. CLIP is a GIS database of statewide conservation priorities for a broad range of natural resources, including biodiversity, landscape function, surface water, groundwater, and marine resources. CLIP is now being used to inform planning decisions by the Peninsular Florida...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
Southeast Blueprint v3.0 This is an older version of the Southeast Blueprint. The Southeast Conservation Blueprint is a map of important areas for conservation and restoration across the Southeast and Caribbean. The Blueprint is the primary product of the Southeast Conservation Adaptation Strategy (SECAS). Through SECAS, diverse partners are working together to design and achieve a connected network of lands and waters that supports thriving fish and wildlife populations and improved quality of life for people across the southeastern United States and the Caribbean. Extent of Southeast Blueprint v3.0 The Southeast Blueprint covers the entire SECAS geography with the exception of the U.S. Virgin Islands, where the...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
This layer depicts projected abundance of native and non-native plant species in the main Hawaiian Islands with high levels of uncertainty removed in post-processing. To estimate native and invasive species abundance in baseline climate conditions, a map was generated that considered abundance as percent cover and used high coefficient of variation values as a mask. The primary sources for post-processing the uncertainty masks are the Hawaiian Islands plant species abundance modeled means and standard deviation values (Wong et al., in preparation). These maps cover the entire landscape (including urban and agricultural areas), and therefore they can be applied in a variety of ways. Maps can be utilized to evaluate...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
Forest Retention Index classes for the southeastern United States at 2040 were processed using the Forest Retention Decision Tree and rendered on a 30-meter by 30-meter grid. The Forest Retention Index is used only for current forestland, identified using National Land Cover Database 2011. Many datasets were used as inputs for the Forest Retention Decision Tree, and they can be grouped into five broad categories: Protected, Tier 1 Priority, Tier 2 Priority, Threats to Forest Retention, and Socio-Economic Value of Forests. Protected datasets include Protected Areas Database-United States, National Conservation Easement Database, state-maintained databases, and private datasets volunteered by conservation partners....
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. Five conservation design elements covering many critical ecological processes and patterns across the...
thumbnail
Landscape Conservation Cooperatives (LCCs) are public-private partnerships composed of states, tribes, federal agencies, non-governmental organizations, universities, international jurisdictions, and others working together to address landscape and seascape scale conservation issues. LCCs inform resource management decisions to address broad-scale stressors-including habitat fragmentation, genetic isolation, spread of invasive species, and water scarcity-all of which are magnified by a rapidly changing climate. For further information go to https://www.fws.gov/science/catalog. The previous 2011 LCC Network Areas data is available at https://www.sciencebase.gov/catalog/item/52f2735ee4b0a6f0bd498c2f
thumbnail
Systematic conservation planning is well suited to address the many large-scale biodiversity conservation challenges facing the Appalachian region. However, broad, well-connected landscapes will be required to sustain many of the natural resources important to this area into the future. If these landscapes are to be resilient to impending change, it will likely require an orchestrated and collaborative effort reaching across jurisdictional and political boundaries. The first step in realizing this vision is prioritizing discrete places and actions that hold the greatest promise for the protection of biodiversity. The irreplacebility of the landscape was assessed to determine the importance of conservation. The number...
thumbnail
The set of terrestrial ecosystem core areas (unstratified) is one of two versions of terrestrial and wetland core areas that are part of a suite of products from the Nature’s Network project (naturesnetwork.org). Nature’s Network is a collaborative effort to identify shared priorities for conservation in the Northeast, considering the value of fish and wildlife species and the natural areas they inhabit. While the other version of terrestrial cores (Terrestrial Core-Connector Network, Northeast U.S.) is considered by the planning team to be the primary version for users, this version is also made available for reference and use. A number of additional datasets are also available in the Nature’s Network gallery:...
thumbnail
Resilience concerns the ability of a living system to adjust to climate change, to moderate potential damages, to take advantage of opportunities, or to cope with consequences; in short, its capacity to adapt. In this project we aim to identify the most resilient examples of key geophysical settings (e.g. sand plains, granite mountains, limestone valleys, etc.) in New york State to provide conservationists with a nuanced picture of the places where conservation is most likely to succeed over centuries.The project had three parts: 1) identifying and mapping the geophysical settings, 2) developing a quantitative estimate of resilience for each setting based on landscape complexity and permeability, and 3) identifying...
thumbnail
The Louisiana State Legislature created the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) in order to conserve, restore, create and enhance Louisiana's coastal wetlands. The wetland restoration plans developed pursuant to these acts specifically require an evaluation of the effectiveness of each coastal wetlands restoration project in achieving long-term solutions to arresting coastal wetlands loss. This data set includes mosaicked aerial photographs for the Delta Management at Fort St. Philip (BS-11) project for 2021. This data is used as a basemap land-water classification. It also serves as a visual tool for project managers to help them identify any obvious problems or land loss within their...
thumbnail
Landscape conservation cooperatives (LCCs) are conservation-science partnerships between the U.S. Fish and Wildlife Service, U.S. Geological Survey (USGS), and other federal agencies, states, tribes, NGOs, universities and stakeholders within a geographically defined area. They inform resource management decisions to address national-scale stressors, including habitat fragmentation, genetic isolation, spread of invasive species, and water scarcity, all of which are accelerated by climate change. This dataset represents the geographic boundary of the Appalachian LCC.


map background search result map search result map Northern Rockies Study Area 2015 Hawaiian Islands Plant Species Abundance Models Forest Patches (1-ac. min.) Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Appalachian LCC Landscape Conservation Design Phase 1 East West Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages Lower Wabash LCD Basemaps for Gulf Hypoxia Blueprint Appalachian LCC Landscape Conservation Design Phase 1 Species Richness Appalachian LCC Boundary_applcc-shp-004 Upper Tennessee River Basin Aquatic Conservation Projects Local Connectivity, New York State Florida Critical Lands and Waters Identification Project 4 0 Terrestrial Ecosystem Core Areas, Unstratified, Northeast U.S. Forest Retention Index for the South at year 2040 Forest Retention Index for the South at year 2060 Southeast Blueprint v3.0 Delta Management at Fort St. Philip (BS-11): 2021 land-water classification Delta Management at Fort St. Philip (BS-11): 2021 land-water classification Lower Wabash LCD Basemaps for Gulf Hypoxia Blueprint Upper Tennessee River Basin Aquatic Conservation Projects 2015 Hawaiian Islands Plant Species Abundance Models Florida Critical Lands and Waters Identification Project 4 0 Northern Rockies Study Area Appalachian LCC Landscape Conservation Design Phase 1 East West Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Build-outs Appalachian LCC Landscape Conservation Design Phase 1 Regional Linkages Appalachian LCC Landscape Conservation Design Phase 1 Local Cores Appalachian LCC Landscape Conservation Design Phase 1 Regional Cores Appalachian LCC Boundary_applcc-shp-004 Appalachian LCC Landscape Conservation Design Phase 1 Species Richness Terrestrial Ecosystem Core Areas, Unstratified, Northeast U.S. Local Connectivity, New York State Forest Retention Index for the South at year 2040 Forest Retention Index for the South at year 2060 Forest Patches (1-ac. min.) Southeast Blueprint v3.0