Skip to main content
Advanced Search

Filters: Tags: decomposition (X) > Categories: Data (X)

10 results (9ms)   

View Results as: JSON ATOM CSV
thumbnail
This data table contains mean decomposition rates and mean carbon:nitrogen ratios for different litter types buried in 7 marshes during 2015. Note that C:N data are repeated for low and high marsh areas at each site in the table. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This data set contains decomposition rates for litter of Salicornia pacifica, Distichlis spicata, and Deschampsia cespitosa buried at 7 tidal marsh sites in 2015. Sediment organic matter values were collected at a subset of sites. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This data table contains results for the 2014 mesocosm tests of inundation effects on decomposition. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This data table contains summary data for temperature time series in near-surface sediments in high and low tidal marsh at 7 sites during 2015. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
This table contains data on dry mass remaining in a subset of Salicornia pacifica and Deschampsia cespitosa litter bags removed over a series of time points spanning 6 months. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
Yes, all data values are reasonable and within the valid range for measurement. The data release consists of 15 tabular data files (csv). These data were compiled to compare patterns and potential drivers of leaf litter decomposition in the Colorado River downstream of Glen Canyon Dam between 1998 and 2022. Objective(s) of our study were to compare the breakdown of cottonwood (Populus fremontii), willow (Salix exigua), and salt cedar (Tamarix chinensis) leaves to a previous decomposition experiment from 1998 (Pomeroy et al. 2000) that was conducted in the context of much cooler water temperatures, higher phosphorus concentrations, lower New Zealand mudsnail densities, and salt cedar litter that was unaffected by...
Categories: Data; Tags: Aquatic Biology, Arizona, Colorado River, Ecology, Geography, All tags...
thumbnail
Decomposition of plant matter is one of the key processes affecting carbon cycling and storage in tidal wetlands. In this study, we evaluated the effects of factors related to climate change (temperature, inundation) and vegetation composition on rates of litter decay in seven tidal marsh sites along the Pacific coast. In 2014 we conducted manipulative experiments to test inundation effects on litter decay at Siletz Bay, OR and Petaluma marsh, CA. In 2015 we studied decay of litter in high and low elevation marshes at seven Pacific coast sites. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R., Thorne, K.M., Dugger, B.D. and Takekawa, J.Y., 2017. Inundation, vegetation,...
thumbnail
Plant-mediated processes are often important in determining carbon cycling and storage in ecosystems. With climate-induced changes in the environment, plant-associated processes may also shift. Salt marshes in particular are useful systems to investigate plant-mediated carbon cycling, as these systems experience both sea-level rise and increased carbon dioxide concentrations due to climate change, in addition to stochastically experiencing extreme drought and flood conditions. We measured biomass, soil, and gas carbon pools and the fluxes between those pools using a mesocosm approach in a salt marsh system, to investigate the response of plant-mediated carbon cycling to near-term climate change.
thumbnail
This data table contains plant composition and marsh surface elevation data for 64 plots where Salicornia pacifica litter was buried at 7 sites in 2015. These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6
thumbnail
Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change.


    map background search result map search result map Organic matter decomposition along coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in Southeastern U.S.A. (2010-2011) Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015 Inundation Experiments, 2014 Decomposition rates and carbon:nitrogen ratios for different litter types, 2015 Litter Decomposition Rates, 2015 Sediment Temperature, 2015 Linear loss of litter over time, 2015 Vegetation Composition and Marsh Surface Elevation, 2015 Salt marsh carbon dynamics under altered hydrologic regimes and elevated CO2 conditions, Louisiana, USA (2014-2015) Environmental, biological, and leaf litter decomposition data in the Colorado River downstream of Glen Canyon Dam between 1998 and 2022 Salt marsh carbon dynamics under altered hydrologic regimes and elevated CO2 conditions, Louisiana, USA (2014-2015) Organic matter decomposition along coastal wetland landscape gradient from tidal freshwater forested wetland to oligohaline marsh in Southeastern U.S.A. (2010-2011) Environmental, biological, and leaf litter decomposition data in the Colorado River downstream of Glen Canyon Dam between 1998 and 2022 Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015 Inundation Experiments, 2014 Decomposition rates and carbon:nitrogen ratios for different litter types, 2015 Litter Decomposition Rates, 2015 Sediment Temperature, 2015 Linear loss of litter over time, 2015 Vegetation Composition and Marsh Surface Elevation, 2015