Skip to main content
Advanced Search

Filters: Tags: fire (X) > Extensions: Shapefile (X)

22 results (36ms)   

View Results as: JSON ATOM CSV
Electrical resistivity tomography (ERT) measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in September 2019 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. First, ERT data were collected at Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska, to quantify permafrost characteristics beneath the lake and across its shorelines. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity produced from these data revealed...
thumbnail
This layer represents historic fire perimeters within 50km of the Crown of the Continent Ecosystem (CCE) from 2014 to 2015 within only Alberta and British Columbia. This dataset was developed by the Crown Managers Partnership, as part of a transboundary collaborative management initiative for the Crown of the Continent Ecosystem, based on commonly identified management priorities that are relevant at the landscape scale. The CMP is collaborative group of land managers, scientists, and stakeholder in the CCE. For more information on the CMP and its collaborators, programs, and projects please visit: http://crownmanagers.org/. This dataset was first published in May 2016. Note: There was not any public data available...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
We established a Landsat-derived geospatial database of unburned islands within 2,298 fires across the Inland Northwestern US (including eastern Washington, eastern Oregon, and Idaho) from 1984-2014. The detection of unburned areas within these fires is based upon a classification tree approach that uses two pre- and post-fire Landsat image pairs (see Meddens et al 2016 for details). The data set consist of unburned patches within each fire that are two pixels or larger. This database will be useful for identifying fire refugia, seed sources, and can be used as an overall metric of fire impacts across the northwestern US. (Meddens, A.J., Kolden, C.A., & Lutz, J.A. (2016). Detecting unburned areas within wildfire...
thumbnail
Shapefile of a set of fires sampled from the GNLCC Large Fire Database, 1984-2011. This sampled was collected from across the total variability in climate within the Great Northern Landscape Conservation Cooperative (GNLCC) study area. Additional detail about the topography, climate, and burn severity was collected for this identified sample, and used to model fire refugia and low-severity burn probability within the fire perimeters.Each fire has a unique numeric identifier of “PolyID”. Additional attributes are as follows:FIRE_ID: For those fires with an ID, the ID assigned by the reporting agency of the MTBS project.FIRENAME: Names of those fires which are named. This is uncommon in Canada.YEAR: The year the fire...
thumbnail
Idaho communities at risk from wildfire, as listed in the Federal Register (August 17,2001). Assist land managers in prioritizing areas that would benefit from hazardous fuels reduction and community assistance programs. Listing is intended to focus management on priority areas, but does not determine whether a particular community receives funding. This dataset was used in the &quot;Idaho Interagency Assessment of Wildland Fire Risk to Communities, 2006&quot; to derive Communities At Risk From Wildland Fire of Idaho - Map 6B. It has also been used in other BLM planning efforts such as Resource Management Plans, Fire Management Plans, and NEPA analysis.
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
Geophysical measurements were collected by the U.S. Geological Survey (USGS) at two sites in Interior Alaska in 2019 and 2020 for the purposes of imaging permafrost structure and quantifying variations in subsurface moisture content in relation to thaw features. In September 2019, electrical resistivity tomography (ERT) and downhole nuclear magnetic resonance (NMR) data were used to quantify permafrost characteristics across the shorelines of Big Trail Lake, a thermokarst lake outside of Fairbanks, Alaska. Three 222 m ERT survey lines were collected perpendicular to the North, East, and South shorelines, and two 110 m lines were collected parallel to the southeast and northeast shorelines. Models of electrical resistivity...
thumbnail
The California Coast has hundreds of tree groves where dual management practices aim to reduce the risk of fire and to conserve habitat for overwintering monarch butterflies. As the climate changes, longer high-intensity droughts can increase mortality and/or limb loss in grove trees which causes an accumulation of fire-prone fuels. Moreover, these trees provide the critical habitat for overwintering monarch butterflies. Every year only certain trees in certain groves accumulate clusters of thousands of monarch butterflies. Should trees die or important roosting branches collapse, monarchs may not return in the future. The overall goal of this project is to understand how the dual management goals of fire management...
thumbnail
Vegetation transformations after wildfires are a growing issue for forest and shrubland managers in the Inland Pacific Northwest. Severe fires combined with persistent drought and invasive species can slow or prevent the recovery of burned forests and shrublands to their pre-fire states, resulting in ecological, economic, and cultural losses. Forests may be converted to shrub fields or grasslands, and shrublands may be replaced by invasive grasses. While shrublands and grasslands can be important components of these ecosystems, there is growing concern about the increased extent of these vegetation types on the landscape. Despite the severe post-fire vegetation transformations, little is known about where, when,...
thumbnail
Electrical resistivity tomography (ERT), downhole nuclear magnetic resonance (NMR), and manual permafrost-probe measurements were used to quantify permafrost characteristics along transects within several catchments in interior Alaska in late summer 2016 and 2017. Geophysical sites were chosen to coincide with additional soil, hydrologic, and geochemical measurements adjacent to various low-order streams and tributaries in a mix of burned and unburned watersheds in both silty and rocky environments. Data were collected in support of the Striegl-01 NASA ABoVE project, "Vulnerability of inland waters and the aquatic carbon cycle to changing permafrost and climate across boreal northwestern North America." Additional...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...
thumbnail
The Fire Restriction Areas represents a geographic location with similar timing for weather changes and resulting fire behavior potentials. Boundaries for each area generally follow county boundaries with some being placed along roadways, rivers, hydrologic divides or other known points that can be clearly described to the public and agency personnel. When a majority of land managers and agency administrators representing the jurisdictions within an area agree that the conditions warrant a restriction, the entire area will be placed in a restricted status. When land managers and agency administrators agree that the restrictions for that area can be removed, the entire area will rescind restrictions as a whole. ...
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (<1 m) and deeper (>1 m) impacts of fire on permafrost along 11 transects that span burned-unburned boundaries in different landscape settings within interior Alaska. Data collected...


map background search result map search result map Communities At Risk From Wildland Fire of Idaho Fire Restriction Areas of Idaho GNLCC Refugia Project Sampled Fires Electrical resistivity tomography (ERT) data; Alaska, 2014 Electrical resistivity tomography (ERT) inverted models; Alaska, 2014 Borehole Nuclear Magnetic Resonance Data; Alaska, 2014 Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2014 Fires of the Crown of the Continent within Alberta and British Columbia (2014-2015) Electrical Resistivity Tomography Inverted Models; Alaska, 2015 Unburned areas within fire perimeters across the Inland Northwestern USA from 1984 to 2014 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Inverted Models Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Alaska permafrost characterization: Geophysical and related field data collected from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Reducing Wildfire Risk While Maintaining Critical Monarch Habitat Along the California Coast Understanding Post-fire Transformations in Inland Northwest Forests and Shrublands Alaska permafrost characterization: Geophysical and related field data collected from 2019-2020 Alaska permafrost characterization: Electrical Resistivity Tomography Data & Models from 2019 Fires of the Crown of the Continent within Alberta and British Columbia (2014-2015) Electrical Resistivity Tomography Data collected in Alaska 2016-2017 Electrical Resistivity Tomography Inverted Models Alaska 2016-2017 Permafrost Soil Measurements in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Data Collected in Alaska 2016-2017 Borehole Nuclear Magnetic Resonance Inverted Models Alaska 2016-2017 Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017 Electrical Resistivity Tomography Inverted Models; Alaska, 2015 Electrical resistivity tomography (ERT) data; Alaska, 2014 Electrical resistivity tomography (ERT) inverted models; Alaska, 2014 Borehole Nuclear Magnetic Resonance Data; Alaska, 2014 Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2014 Communities At Risk From Wildland Fire of Idaho Fire Restriction Areas of Idaho Reducing Wildfire Risk While Maintaining Critical Monarch Habitat Along the California Coast Understanding Post-fire Transformations in Inland Northwest Forests and Shrublands Unburned areas within fire perimeters across the Inland Northwestern USA from 1984 to 2014 GNLCC Refugia Project Sampled Fires