Skip to main content
Advanced Search

Filters: Tags: floodplains (X) > Types: OGC WMS Layer (X)

23 results (39ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
This data set consists of monthly averages of soil and litter properties. Rows are grouped in the following order: year, month, vegetation type, plot ID. Within a single month five plots were sampled within each of the 2 vegetation types (10 plots total). Columns F+ represent individual measurements.
thumbnail
River valley boundary extents were generated for select large river floodplains of the Upper Midwest, United States. These polygons were delineated using a method that incorporated interpolating a water surface elevation that completely over-topped water-control structures within the valley such as levees, flood walls, and roadways. The intersection of this derived water surface and land elevation at the outermost edge of the floodplain was used to delineate the approximate extent of the river valley boundary. We used best professional judgment to approximate this water surface elevation.
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS).
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Geological Survey (USGS) in cooperation with the city of Grandview, Missouri, assessed flooding of the Little Blue River at Grandview resulting from varying precipitation magnitudes and durations, and expected land cover changes. The precipitation scenarios were used to develop a library of flood-inundation maps that included a 3.5-mile reach of the Little Blue River and tributaries within and adjacent to the city. A hydrologic model of the upper Little Blue River Basin, and hydraulic model of a selected study reach of the Little Blue River and tributaries were constructed to assess streamflow magnitudes associated with simulated precipitation amounts and the resulting flood-inundation conditions. The...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
This collection of conservation areas consists of the floodplain of the combined streams of the Iowa River and the Cedar River. The study area begins just southeast of Wapello, IA, and continues southeast until the Horseshoe Bend Division, Port Louisa NWR. The area is currently managed to maintain meadow or grassland habitat which requires intensive management due to vegetative succession. In addition, this floodplain area contains a high proportion of managed lands and private lands in the Wetland Reserve Program and is a high priority area for cooperative conservation actions. This project provides a late-summer baseline vegetation inventory to assess future management actions in an adaptive process. Changes in...
thumbnail
These data-sets are polygon shapefiles that represent flood inundation boundaries for 157 flooding scenarios in an 8-mile reach of the Papillion Creek near Offutt Air Force Base. These shapefiles were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Air Force, Offutt Air Force Base for use within the USGS Flood Inundation Mapping program. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://www.usgs.gov/mission-areas/water-resources/science/flood-inundation-mapping-fim-program, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgages on the Papillion...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The development and the generation of the datasets that are published through this data release, were based on the results and findings of this report: Kohn, M.S. and Patton, T.T., 2018, Flood-Inundation Maps for the South Platte River at Fort Morgan, Colorado, 2018: U.S. Geological Survey Scientific Investigations Report 2018-5114, 14 p., https://doi.org/10.3133/sir20185114. The geospatial dataset contain final versions of the raster and vector geospatial data and its related metadata. The geospatial data include inundation extents, corresponding inundation depths, and the study area boundaries. Digital flood-inundation maps for a 4.5-mile reach of the South Platte River at Fort Morgan, Colorado from Morgan County...
thumbnail
This is a polygon coverage of sand deposits from the 2011 Missouri River flood. The polygon coverages were compiled from classification of 26 multispectral SPOT (Système Pour l’Observation de la Terre) 4 and 5 satellite images colleted during October and November, 2011. The dataset covers 1,298 km of the Missouri River valley bottom from Gavins Point Dam in South Dakota to the confluence with the Mississippi River near St. Louis, Missouri. Dataset is described in: Alexander, J.S., Jacobson, R.B., and Rus, D.L., 2013, Sediment transport and deposition in the lower Missouri River during the 2011 flood: U.S. Geological Survey Professional Paper, 27 p. http://pubs.usgs.gov/pp/1798f/
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The U.S. Army Corps of Engineers' Upper Mississippi River Restoration (UMRR) program, through its Long Term Resource Monitoring (LTRM) element, collected aerial imagery of the systemic Upper Mississippi River System (UMRS) during the summer of 2020. A Land Cover/Land Use (LCU) spatial database was developed based on the 2020 aerial imagery, which adds a fourth systemic-wide database to the existing 1989, 2000, and 2010/11 LCU databases. While a crosswalk was used to update the 1989 LCU database (originally developed using a different classification system), the 2000, 2010/11, and 2020 LCU databases share the same classification, making them directly comparable from a classification standpoint. Furthermore, protocols...
thumbnail
The development and the generation of the datasets that are published through this data release, were based on the results and findings of this report: Kohn, M.S. and Patton, T.T., 2018, Flood-Inundation Maps for the South Platte River at Fort Morgan, Colorado, 2018: U.S. Geological Survey Scientific Investigations Report 2018-5114, 14 p., https://doi.org/10.3133/sir20185114. The model archive dataset contains all relevant files to document and re-run the surface-water hydraulic model that are discussed in the report. The model archive contains two model runs, the calibration model run and the flood inundation model run. Digital flood-inundation maps for a 4.5-mile reach of the South Platte River at Fort Morgan,...
thumbnail
Gravel-bed river floodplains in mountain landscapes disproportionately concentrate diverse habitats, nutrient cycling, productivity of biota, and species interactions. Although stream ecologists know that river channel and floodplain habitats used by aquatic organisms are maintained by hydrologic regimes that mobilize gravel-bed sediments, terrestrial ecologists have largely been unaware of the importance of floodplain structures and processes to the life requirements of a wide variety of species. We provide insight into gravel-bed rivers as the ecological nexus of glaciated mountain landscapes. We show why gravel-bed river floodplains are the primary arena where interactions take place among aquatic, avian, and...
thumbnail
River transects were generated at 1-mile increments across select large river floodplains of the Upper Midwest, United States. These transects were created perpendicular to the river valley bottom centerline and were clipped by the floodplain boundary also generated. Transects that extended up into the valleys of connecting tributaries were not included because of spatial bias toward very large values. Inclusive features within the derived valley bottom outline such as raised plateaus were removed. The total length of these extended transects was then calculated. Five separate variables were developed to assess geomorphic connectivity potential using the transects: channel sinuosity, average floodplain width, standard...


map background search result map search result map Imagery Missouri River 2011 Regional Sand Floodplain Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes Port Louisa National Wildlife Refuge: 2014 Land Cover Land Use Horseshoe Bend Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data Geospatial Data for a Flood-Inundation Mapping Study of the South Platte River at Fort Morgan, Colorado, 2018 Surface-Water Model Archive for a Flood-Inundation Mapping Study of the South Platte River at Fort Morgan, Colorado, 2018 River Valley Boundaries Generated for Select Large Rivers of the Upper Midwest, United States River Valley Transects Generated for Select Large Rivers of the Upper Midwest, United States Geospatial data and hydraulic-model archive for evaluation of flood-inundation maps developed for a reach of the Little Blue River at Grandview, Missouri UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 04 UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 13 UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 South UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 UMRR LTRM 2020 4-Band Aerial Orthoimages - Mississippi River Pool 13 North UMRR LTRM 2020 4-Band Aerial Orthoimages - Mississippi River Pool 13 South UMRR LTRM 2020 LCU Mapping - Mississippi River Open River UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 10 Shapefile of flood inundation maps for Papillion Creek near Offutt Air Force Base, Nebraska UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 Geospatial data and hydraulic-model archive for evaluation of flood-inundation maps developed for a reach of the Little Blue River at Grandview, Missouri Port Louisa National Wildlife Refuge: 2014 Land Cover Land Use Horseshoe Bend Geospatial Data for a Flood-Inundation Mapping Study of the South Platte River at Fort Morgan, Colorado, 2018 Surface-Water Model Archive for a Flood-Inundation Mapping Study of the South Platte River at Fort Morgan, Colorado, 2018 Shapefile of flood inundation maps for Papillion Creek near Offutt Air Force Base, Nebraska UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 South UMRR LTRM 2020 4-Band Aerial Orthoimages - Mississippi River Pool 13 South Effects of Flood Inundation and Invasion by Phalaris arundinacea on Nitrogen Cycling in an Upper Mississippi River Floodplain Forest data UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 10 UMRR LTRM 2020 4-Band Aerial Orthoimages - Mississippi River Pool 13 North UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 11 UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 13 UMRR LTRM 2020 4-Band Aerial Imagery Mosaic - Mississippi River Pool 13 UMRR LTRM 2020 LCU Mapping - Mississippi River Pool 04 UMRR LTRM 2020 LCU Mapping - Mississippi River Open River Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes Missouri River 2011 Regional Sand Floodplain Imagery River Valley Transects Generated for Select Large Rivers of the Upper Midwest, United States River Valley Boundaries Generated for Select Large Rivers of the Upper Midwest, United States