Skip to main content
Advanced Search

Filters: Tags: food web (X) > Categories: Publication (X)

6 results (37ms)   

View Results as: JSON ATOM CSV
We propose a framework for hypothesis-testing of stable isotope ratios in ecological studies. Statistical procedures are based on analysis of nested linear models and a residual permutation procedure (RPP) that is employed to evaluate probabilities associated with test statistics. We used simulated examples and a real data set to illustrate the utility and generality of the method. First, we developed a test for differences in centroid location and dispersion of delta13C and delta15N values within and among groups of isotopic data. Second, we evaluated magnitude and direction of change in centroid position (termed "path") of a pair of isotopic samples separated in space/time relative to paths of other paired sample...
Spatial patterns of resource use by small-bodied fishes in the San Juan River were examined using stable isotopes. Using δ15N of fishes as an index of trophic position, our data suggest both native and non-native fishes primarily consumed macro-invertebrates. The δ13C of these fishes further suggested a detritus-based food web, from which most species fed on chironomids in low-velocity habitats. A two-way ANOVA revealed a significant interaction between trophic level of fish species and longitudinal position in the river. This interaction was primarily attributed to a decline in trophic level of non-native red shiner Cyprinella lutrensis, relative to other species, in upstream reaches of the river. In addition,...
In many ecosystems, seasonal shifts in temperature and precipitation induce pulses of primary productivity that vary in phenology, abundance, and nutritional quality. Variation in these resource pulses could strongly influence community composition and ecosystem function, because these pervasive bottom-up forces play a primary role in determining the biomass, life cycles, and interactions of organisms across trophic levels. The focus of this research is to understand how consumers across trophic levels alter resource use and assimilation over seasonal and interannual timescales in response to climatically driven changes in pulses of primary productivity. We measured the carbon isotope ratios (delta(13)C) of plant,...
The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determine how Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate,...
The main route of exposure for selenium (Se) is dietary, yet regulations lack biologically based protocols for evaluations of risk. We propose here an ecosystem-scale model that conceptualizes and quantifies the variables that determine how Se is processed from water through diet to predators. This approach uses biogeochemical and physiological factors from laboratory and field studies and considers loading, speciation, transformation to particulate material, bioavailability, bioaccumulation in invertebrates, and trophic transfer to predators. Validation of the model is through data sets from 29 historic and recent field case studies of Se-exposed sites. The model links Se concentrations across media (water, particulate,...
Understanding how communities respond to changes in temperature is a major challenge for community ecology. Temperature influences the relative degree to which top-down and bottom-up forces structure ecological communities. In greenhouse experiments using the aquatic community found in pitcher plants (Sarracenia purpurea), I tested how temperature affected the relative importance of top-down (mosquito predation) and bottom-up (ant carcasses) forces on protozoa and bacteria populations. While bottom-up effects did not vary consistently with temperature, the top-down effects of predators on protozoa increased at higher temperatures. These results suggest that temperature could change the relative importance of top-down...