Skip to main content
Advanced Search

Filters: Tags: geoscientificInformation (X) > Types: Downloadable (X)

2,138 results (20ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset “Broad-scale assessment of biophysical features in Colorado: Soil salinity using electrical conductance” presents information extracted from the Natural Resources Conservation Service (NRCS) gridded surface soils geographic database (gSSURGO). Fields retained and presented here include map unit (MU) codes and component (COMP) codes that may be used to reference records in the original, NRCS, data. Soil salinity is typically measured and evaluated based on electrical conductance (EC), and values presented here include the representative value for the map unit component (ECR) and the highest estimated value (ECH). Soils with high salinity can affect the composition of vegetation and can limit production...
thumbnail
This data collection consists of a synthetic stream network and associated catchments developed as the foundation for a Spatially Referenced Regressions on Watershed Attributes (SPARROW) dissolved-solids source and transport model for the Upper Colorado River Basin (UCRB). The SPARROW model requires a hydrologically connected representation of a stream network through which loads are transported from an upstream reach to the next reach downstream (Schwarz and others, 2006; Moore and others, 2004). Each stream reach or segment within this synthetic stream network has an associated local drainage area or catchment used to calculate catchment characteristics that may have an effect on loads being modeled. The synthetic...
thumbnail
This dataset represents soils of Wyoming at 1:100,000- scale. The layer contains 350 separate soils descriptions across 23 Wyoming counties. The layer was compiled based on the five-factor soil forming model using digital surficial geology, bedrock geology, and elevation. This dataset will be more fully documented in 23 AES publications scheduled for completion in winter of 99/00. These publications will use the designation AES Bulletin B-1071 followed by a two letter abreviation for each county.
thumbnail
Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project.There is no widely accepted standard for analyzing shoreline...
thumbnail
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the main inflows to Lake Powell. These new data are intended to improve water budget management decisions that affect the natural and recreational resources of the reservoir. Multibeam echosounder bathymetry and...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Antelope Canyon, BOR, Bullfrog, Bullfrog Bay, Bureau of Reclamation, All tags...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
This part of DS 781 presents 2-m-resolution data collected by the U.S. Geological Survey in 2007 for the acoustic-backscatter map of the Offshore of Gaviota Map Area, California. The GeoTiff is included in "Backscatter_[USGS07]_OffshoreGaviota.zip," which is accessible from https://doi.org/10.5066/F7TH8JWJ. The acoustic-backscatter map of the Offshore of Gaviota map area in southern California was generated from acoustic-backscatter data collected by the U.S. Geological Survey (USGS) and by Fugro Pelagos Inc. Acoustic mapping was completed between 2007 and 2008 using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders, as well as a 234-kHz SEA SWATHplus bathymetric...
thumbnail
This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
Hillshade of lidar-derived, bare earth digital elevation model, with 235-degree azimuth and 20-degree sun angle, 0.25m resolution, depicting earthquake effects following the August 24, 2014 South Napa Earthquake.
This dataset is based on U.S. Geological Survey (USGS) resource assessments for “undiscovered” oil resources, which are resources that have not yet been extensively proven by drilling (USGS 2014). Individual resource assessments describe the amount of petroleum resources in units with similar geologic features. We focused on the amount of undiscovered continuous oil because technological advances have made exploitation of continuous resources increasingly profitable and large amounts remain undeveloped in comparison with conventional resources. We quantified the density of continuous oil resources by adding together the amounts in spatially overlapping assessment units and dividing these totals by polygon areas....
This dataset is based on U.S. Geological Survey (USGS) resource assessments for “undiscovered” natural gas liquid resources, which are resources that have not yet been extensively proven by drilling (USGS 2014). Individual resource assessments describe the amount of petroleum resources in units with similar geologic features. We quantified the density of natural gas liquid resources by adding together the amounts in spatially overlapping assessment units and dividing these totals by polygon areas. Since assessments for geologic areas used in this analysis were completed at various times, the certainty related to these values is likely to vary according to geologic unit. USGS [U.S. Geological Survey]. 2014. Energy...


map background search result map search result map Soils for Sheridan County Wyoming at 1:100,000 WA Short Term Shoreline Change Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake Upper Colorado River Basin SPARROW model catchments and synthetic stream network - 2017 Backscatter [USGS07]--Offshore of Gaviota Map Area, California Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Undiscovered Continuous Oil, Colorado Plateau Undiscovered Natural Gas Liquids Colorado Plateau Broad-scale assessment of biophysical features in Colorado: Soil salinity using electrical conductance 1790–1823 Black Cone lava flow extent 1919–1920 Maunaiki lava flow extent 1923 (August) lava flow extent 1955 (February–May) lava flow contacts and eruptive fissures 1959 (November–December) Kilauea Iki lava flow extent 1961 (March) lava flow extent 1963 (August) lava flow extent 1968 (August) lava flow extent 1974 (December) lava flow extent Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) 1961 (March) lava flow extent 1963 (August) lava flow extent 1923 (August) lava flow extent 1959 (November–December) Kilauea Iki lava flow extent 1790–1823 Black Cone lava flow extent Backscatter [USGS07]--Offshore of Gaviota Map Area, California 1919–1920 Maunaiki lava flow extent 1974 (December) lava flow extent 1968 (August) lava flow extent 1955 (February–May) lava flow contacts and eruptive fissures Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River WA Short Term Shoreline Change Soils for Sheridan County Wyoming at 1:100,000 Broad-scale assessment of biophysical features in Colorado: Soil salinity using electrical conductance Upper Colorado River Basin SPARROW model catchments and synthetic stream network - 2017 Undiscovered Continuous Oil, Colorado Plateau Undiscovered Natural Gas Liquids Colorado Plateau