Skip to main content
Advanced Search

Filters: Tags: geoscientificInformation (X) > partyWithName: U.S. Geological Survey - ScienceBase (X)

1,534 results (112ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
These data were generated for a cooperative project created by an agreement between the Federal Lands and Highways, Central Federal Lands Division (FLH-CFL) and the USGS Fort Collins Science Center (Colorado; https://www.fort.usgs.gov/) to facilitate development of spatially explicit natural resources and socioeconomic information for utilization during comprehensive transportation planning efforts. Federal Lands Highways (FLH) is the federal agency that helps guide and support transportation planning at national, regional, and state levels, including providing funding, information, and tools to state transportation planners. FLH is currently undertaking a series of pilot studies aimed at improving the availability,...
thumbnail
This dataset “Broad-scale assessment of biophysical features in Colorado: Soil salinity using electrical conductance” presents information extracted from the Natural Resources Conservation Service (NRCS) gridded surface soils geographic database (gSSURGO). Fields retained and presented here include map unit (MU) codes and component (COMP) codes that may be used to reference records in the original, NRCS, data. Soil salinity is typically measured and evaluated based on electrical conductance (EC), and values presented here include the representative value for the map unit component (ECR) and the highest estimated value (ECH). Soils with high salinity can affect the composition of vegetation and can limit production...
thumbnail
A digital representation of a glacial aquifer map for the northeastern United States (Kontis and others, 2004; http://pubs.er.usgs.gov/publication/pp1415C; Plate 3) has been prepared by staff of the U.S. Geological Survey. Aquifer data was digitally compiled from a georeferenced version of Plate 3, along with supplemental aquifer maps that covered portions of the northeast.
thumbnail
High-resolution geophysical mapping of Lake Powell in the Glen Canyon National Recreation Area in Utah and Arizona was conducted between October 8 and November 15, 2017, as part of a collaborative effort between the U.S. Geological Survey and the Bureau of Reclamation to provide high-quality data needed to reassess the area-capacity tables for the Lake Powell reservoir. Seismic data collected during this survey can help to define the rates of deposition within the San Juan and Colorado Rivers, which are the main inflows to Lake Powell. These new data are intended to improve water budget management decisions that affect the natural and recreational resources of the reservoir. Multibeam echosounder bathymetry and...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: Antelope Canyon, BOR, Bullfrog, Bullfrog Bay, Bureau of Reclamation, All tags...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
These feature data are part of a larger dataset containing shapefiles and associated metadata for lava flows erupted at Kilauea volcano from ca. 1790 through 1982. The complete dataset includes all known subaerial eruptions in the volcano's Southwest Rift Zone and East Rift Zone, and selected flows erupted within the summit caldera, during this time period. Two attributed shapefiles are associated with each eruption: a polyline shapefile for the lava flow contacts and eruptive fissures, and a polygon shapefile showing the full extent of the lava flow after emplacement. In total, this dataset contains 100 shapefiles, each with an associated metadata .txt file, representing 50 separate eruptions. The lava flow contacts...
thumbnail
This dataset consists of short-term (~32 years) shoreline change rates for the north coast of Alaska between the U.S. Canadian Border and the Hulahula River. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1978 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
This dataset consists of short-term (~31 years) shoreline change rates for the north coast of Alaska between the Point Barrow and Icy Cape. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey. Short-term rates of shoreline change were calculated using a linear regression rate-of-change method based on available shoreline data between 1979 and 2010. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate short-term rates.
thumbnail
Hillshade of lidar-derived, bare earth digital elevation model, with 235-degree azimuth and 20-degree sun angle, 0.25m resolution, depicting earthquake effects following the August 24, 2014 South Napa Earthquake.
thumbnail
This product is the result of a comprehensive compilation of site-specific ground photographs taken where tectonic faulting and ground failure produced visible deformation that fractured and disturbed the ground surface. The resultant data is distributed as collection of JPEG image files. All post-earthquake photographs taken by investigators working for public agencies are in the public domain, including data that have been published in summary reports elsewhere. These photographs are best viewed in context with fault rupture and other observations from the related KMZ file of summary field observations and photographs (https://www.sciencebase.gov/catalog/item/5c1d7ae0e4b0708288ca1322), or from the associated open-file...
thumbnail
This product is the result of a comprehensive compilation of site-specific ground photographs taken where tectonic faulting and ground failure produced visible deformation that fractured and disturbed the ground surface. The resultant data is distributed as a tab-delimited text file. All post-earthquake photographs taken by investigators working for public agencies are in the public domain, including data that have been published in summary reports elsewhere.
thumbnail
This dataset consists of 65 magnetotelluric (MT) stations collected in 2015 near Mountain Pass, California. The U.S. Geological Survey acquired these data to create a regional conductivity model near the Mountain Pass mine. This work is in support of characterizing mineral deposits.
thumbnail
This dataset consists of 65 magnetotelluric (MT) stations collected in 2015 near Mountain Pass, California. The U.S. Geological Survey acquired these data to create a regional conductivity model near the Mountain Pass mine. This work is in support of characterizing mineral deposits.


map background search result map search result map Photographs of fault rupture and ground deformation features produced by the Mw 6.0 South Napa earthquake of August 24, 2014 Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Distribution of Stratified-Drift Aquifers in the Glaciated Northeastern United States Broad-scale assessment of biophysical features in Colorado: Soil salinity using electrical conductance 1790–1823 Black Cone lava flow extent 1919–1920 Maunaiki lava flow extent 1923 (August) lava flow extent 1955 (February–May) lava flow contacts and eruptive fissures 1959 (November–December) Kilauea Iki lava flow extent 1961 (March) lava flow extent 1963 (August) lava flow extent 1968 (August) lava flow extent 1974 (December) lava flow extent Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) Table of photograph metadata and links to full-resolution photographs taken at observation stations by post-earthquake reconnaissance teams, Mw 6.0 South Napa Earthquake of August 24, 2014 station mp205 station mp333 1961 (March) lava flow extent 1963 (August) lava flow extent 1923 (August) lava flow extent 1959 (November–December) Kilauea Iki lava flow extent 1790–1823 Black Cone lava flow extent 1919–1920 Maunaiki lava flow extent 1974 (December) lava flow extent 1968 (August) lava flow extent Hillshade raster (235-degree azimuth, 20-degree sun angle) derived from lidar data collected after the August 24, 2014 South Napa earthquake 1955 (February–May) lava flow contacts and eruptive fissures Photographs of fault rupture and ground deformation features produced by the Mw 6.0 South Napa earthquake of August 24, 2014 Table of photograph metadata and links to full-resolution photographs taken at observation stations by post-earthquake reconnaissance teams, Mw 6.0 South Napa Earthquake of August 24, 2014 Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Exposed East Chukchi Sea coast of Alaska between the Point Barrow and Icy Cape Multibeam backscatter data collected within Lake Powell, UT-AZ during USGS Field Activity 2017-049-FA, using a dual-head Reson T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 12N, WGS 84, 2 meter resolution) Digital Shoreline Analysis System (DSAS) version 4.3 Transects with Short-Term Linear Regression Rate Calculations for the Sheltered East Beaufort Sea coast of Alaska between the U.S. Canadian Border and the Hulahula River Broad-scale assessment of biophysical features in Colorado: Soil salinity using electrical conductance Distribution of Stratified-Drift Aquifers in the Glaciated Northeastern United States