Skip to main content
Advanced Search

Filters: Tags: geoscientificInformation (X) > partyWithName: Alaska Division of Geological & Geophysical Surveys (X)

449 results (85ms)   

View Results as: JSON ATOM CSV
thumbnail
Aerial photographs of the coastline from Teller to Nome were collected between August 26, 2015 - August 27, 2015. The photographs were processed using Structure-from-Motion (SfM) photogrammetric techniques. Global Positioning System (GPS) checkpoints were collected via a Global Navigation Satellite System (GNSS) survey conducted between August 15 and September 14, 2015. For the purposes of open access to elevation and orthoimagery datasets in coastal regions of Alaska, this collection is being released as a Raw Data File with an open end-user license. This file is a single-band, 32-bit float DSM (digital surface model) which represents surface elevations of buildings, vegetation, and uncovered ground surfaces in...
thumbnail
This data lists the historically active volcanoes of Alaska and the year of the last major eruptive event. The volcanoes listed meet at least one of the following criteria since 1700 CE: 1) Documented, unquestioned eruption OR 2) A strongly suspected eruption, often an eruption documented in a historical account with very little information. Current geologic knowledge must not contradict the eruption account, OR 3) Persistent (usually on the order of decades, but certainly longer than several months) fumaroles, with temperatures (where measured) within approximately 10 degrees C of the boiling point, OR 4) Significant, measured, volcanic-related, non-eruptive deformation, OR 5) Documented earthquake swarm with strongly...
thumbnail
This 30-meter, horizontal, cell-size, shaded relief, georeferenced TIFF image of Okmok Volcano, Umnak Island, Alaska, was created by combining digital elevation model (DEM) data provided by NASA's shuttle radar topography mission (SRTM) and the aircraft-mounted synthetic aperture radar (AirSAR) mission.
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired LiDAR (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. LiDAR data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (light detection and ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...
thumbnail
In advance of design, permitting, and construction of a pipeline to deliver North Slope natural gas to out-of-state customers and Alaska communities, the Division of Geological & Geophysical Surveys (DGGS) has acquired lidar (Light Detection and Ranging) data along proposed pipeline routes, nearby areas of infrastructure, and regions where significant geologic hazards have been identified. Lidar data will serve multiple purposes, but have primarily been collected to (1) evaluate active faulting, slope instability, thaw settlement, erosion, and other engineering constraints along proposed pipeline routes, and (2) provide a base layer for the state-federal GIS database that will be used to evaluate permit applications...


map background search result map search result map Historically active volcanoes of Alaska 30-meter shaded relief image of Okmok Volcano, Umnak Island, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Anchorage Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska Photogrammetric digital surface models and orthoimagery for the continuous coastline, Wales to Platinum, Alaska, segment B: Teller to Nome Photogrammetric digital surface models and orthoimagery for the continuous coastline, Wales to Platinum, Alaska, segment B: Teller to Nome 30-meter shaded relief image of Okmok Volcano, Umnak Island, Alaska High-resolution lidar data for infrastructure corridors, Nabesna Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Big Delta Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Tyonek Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Anchorage Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Gulkana Quadrangle, Alaska High-resolution lidar data for infrastructure corridors, Chandalar Quadrangle, Alaska Historically active volcanoes of Alaska