Skip to main content
Advanced Search

Filters: Tags: great basin (X) > Types: Map Service (X)

226 results (12ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This raster dataset depicts percent canopy cover derived from 1-m conifer classifications when aggregated to 30-m cells. Conifer features were classified from 2010, 2012, and 2013 NAIP Digital Ortho Quarter Quads (DOQQ) using the Feature Analyst 5.0 extension for ArcGIS 10.1. Tiles were organized and grouped by Nevada Department of Wildlife Population Management Unit (PMU) locations, plus a 10 km area beyond the PMU extent. Analysts visually identified conifers in the imagery using false color infrared settings and digitized multiple trees per tile as training locations for classification. After performing hierarchical learning and clutter removal with Feature Analyst to remove non-conifer features on output shapefiles,...
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP4.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
This raster represents a continuous surface of sage-grouse habitat suitability index (HSI) values for northeastern California. HSIs were calculated for spring (mid-March to June), summer (July to mid-October), and winter (November to March) sage-grouse seasons, and then multiplied together to create this composite dataset.
thumbnail
Five principal components are used to represent the climate variation in an original set of 12 composite climate variables reflecting complex precipitation and temperature gradients. The dataset provides coverage for future climate (defined as the 2040-2070 normal period) under the RCP8.5 emission scenarios. Climate variables were chosen based on their known influence on local adaptation in plants, and include: mean annual temperature, summer maximum temperature, winter minimum temperature, annual temperature range, temperature seasonality (coefficient of variation in monthly average temperatures), mean annual precipitation, winter precipitation, summer precipitation, proportion of summer precipitation, precipitation...
thumbnail
FY2013The proposed project’s objective is to provide a scientific review of(1) current priority species management practices in Nevada, (2) status of our combined scientific knowledge of priority species’ needs and gaps in that knowledge, and(3) adequacy of current monitoring programs of priority species.The project builds on recent, well-researched species conservation plans for Nevada (GBBO 2010, NWPT 2012), and it will leverage funds that are already obligated to research on scientifically based disturbance buffer recommendations and to evaluate GBBO’s statewide landbird monitoring program, the Nevada Bird Count.The outcome of the proposed work will be an online open-source compendium document that summarizes...
thumbnail
FY2014One of the primary challenges facing public land managers in the Great Basin is identifying adaptation strategies to increase resiliency to climate change in an area that is already struggling with profound environmental challenges. Recent efforts to understand how the Great Basin weathered past droughts and climate variability may offer insight into approaches that could work in future decades. One approach to gather this information is to understand Traditional Ecological Knowledge (TEK). Gathering this information is challenging and requires an acknowledgment that much of this information is highly sensitive and proprietary. Translating this information into actionable management plans is even more challenging.This...
thumbnail
FY2014The goals for the project are1) Develop a Walker River Vision document which will include Traditional Ecological Knowledge (TEK) of the traditional plants, wildlife, fish and water located on the reservation and traditional hunting/ gathering areas of the Agai Dicutta Numa (Walker River Paiutes) for use in future resource management planning and cultural sustainability..2) Develop a pilot project along the Walker River on the reservation by planting willows and other traditional plants to determine best practices for re-vegetation.This project will focus on GBLCC Goal 2: Focus science and management actions to sustain natural resources in the context of changing environmental conditions.The proposed project...
thumbnail
This dataset provides early estimates of 2021 exotic annual grasses (EAG) fractional cover predicted on May 3rd. We develop and release EAG fractional cover map with an emphasis on cheatgrass (Bromus tectrorum) but it also includes number of other species, i.e., Bromus arvensis L., Bromus briziformis, Bromus catharticus Vahl, Bromus commutatus, Bromus diandrus, Bromus hordeaceus L., Bromus japonicus, Bromus madritensis L., Bromus racemosus, Bromus rubens L., Bromus secalinus L., Bromus texensis (Shear) Hitchc., and medusahead (Taeniatherum caput-medusae. The dataset was generated leveraging field observations from Bureau of Land Management (BLM) Assessment, Inventory, and Monitoring data (AIM) plots; Harmonized...
thumbnail
This data set consists of polylines representing groundwater-level altitude contours, 1982, for middle Humboldt River basin, north-central Nevada as published on plate 2, figure 3 in the U.S. Geological Survey Water-Resources Investigations Report 98-4209 titled "Hydrogeologic framework and ground-water levels, 1982 and 1996, middle Humboldt River basin, north-central Nevada," 1999. A subset of the contours were published as part of a larger data set representing water-table contours for Nevada (Buto and others, 2006). The remaining contours have been added to complete this data set. References Cited Buto, S.G., Evetts, D.M., Smith-Sager, S., 2006, Water-table contours of Nevada, accessed May 16, 2018 at URL https://water.usgs.gov/lookup/getspatial?sir2006-5100_wanv_l.
thumbnail
Cheatgrass began invading the Great Basin about 100 years ago, changing large parts of the landscape from a rich, diverse ecosystem to one where a single invasive species dominates. Cheatgrass dominated areas experience more fires that burn more land than in native ecosystems, resulting in economic and resource losses. Therefore, the reduced production, or absence, of cheatgrass in previously invaded areas during years of adequate precipitation could be seen as a windfall. However, this cheatgrass dieoff phenomenon creates other problems for land managers like accelerated soil erosion, loss of early spring food supply for livestock and wildlife, and unknown recovery pathways. We used satellite data and scientific...
thumbnail
These datasets provide early estimates of 2022 fractional cover for exotic annual grass (EAG) species and one native perennial grass species on a bi-weekly basis from May to early July. The EAG estimates are developed within one week of the latest satellite observation used for that version. Each bi-weekly release contains four fractional cover maps along with their corresponding confidence maps for: 1) a group of 16 species of EAGs, 2) cheatgrass (Bromus tectorum); 3) medusahead (Taeniatherum caput-medusae); and 4) Sandberg bluegrass (Poa secunda). These datasets were generated leveraging field observations from Bureau of Land Management (BLM) Assessment, Inventory, and Monitoring (AIM) data plots; Harmonized Landsat...
thumbnail
The distribution and abundance of cheatgrass, an invasive annual grass native to Eurasia, has increased substantially across the Intermountain West, including the Great Basin. Cheatgrass is highly flammable, and as it has expanded, the extent and frequency of fire in the Great Basin has increased by as much as 200%. These changes in fire regimes are associated with loss of the native sagebrush, grasses, and herbaceous flowering plants that provide habitat for many native animals, including Greater Sage-Grouse. Changes in vegetation and fire management have been suggested with the intent of conserving Greater Sage-Grouse. However, the potential responses of other sensitive-status birds to these changes in management...
thumbnail
Predictions of raven occurrence in the absence of anthropogenic environmental effects. Raven point counts were related to landscape covariates using Bayesian hierarchical occupancy models and the means of the posterior distributions for relevant effects were used to generate the predictions.
thumbnail
FY2014There is increasing interest in climate change adaptation, particularly since the release of the Presidents Executive Order on Climate Preparedness in November, 2013, yet many field staff remain uncertain how to put adaptation into practice. Our goal with this project is to bridge the gap between the wealth of high-level climate adaptation guidance and the field staff who carry out specific regulatory processes, specifically Habitat Conservation Plans. Following best practices from the literature on linking science and management, we will begin with a focus on what people do rather than on the climate science. We will map the current HCP development and approval process in Region 8, identify where and how...
thumbnail
FY2017There is an increasing concern and need for the conservation of springsnails and other endemic mollusks and for conservation of the unique spring and springbrook habitats on which they depend (Hershler et al 2014; Abele 2011). Nationwide, several of these species have been listed as endangered or threatened under provisions of the ESA; others are candidates for federal listing or are undergoing review by USFWS for possible future listing actions. These species can be particularly susceptible to localized threats and specific knowledge necessary for effective site-based conservation is often limited or lacking.Springsnail are particularly susceptible to extinction because the entire population of any single...
thumbnail
These contours represent static groundwater levels based on depth-to-water measurements made at 165 monitoring wells during water years 2016-2020 in Smith Valley and Mason Valley, Nevada. For each monitoring well, the median groundwater-level altitude during the five-year period (2016-2020) was used for developing the groundwater-level contours. Depth-to-water measurements were collected by the USGS and the Nevada Division of Water Resources (NDWR).
thumbnail
This dataset consists of points representing seepage site locations and discharge measurements as published in appendices 1-3 of the 2013 publication: Plume, R.W., and Smith, J.L., 2013, Properties of basin-fill deposits, a 1971–2000 water budget, and surface-water-groundwater interactions in the upper Humboldt River basin, northeastern Nevada: U.S. Geological Survey Scientific Investigations Report 2013-5077, https://doi.org/10.3133/sir20135077.
thumbnail
FY2014Although the future of sage grouse depends on the future of sagebrush, we have limited ability to anticipate impacts of climate change on sagebrush populations. Current efforts to forecast sagebrush habitat typically rely on species distribution models (SDMs), which suffer from a variety of well-known weaknesses. However, by integrating SDMs with complementary research approaches, such as historical data analysis and mechanistic models, we can provide increased confidence in projections of habitat change. Our goal is to forecast the effect of climate change on the distribution and abundance of big sagebrush in order to inform conservation planning, and sage grouse management in particular, across the Intermountain...


map background search result map search result map Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Evaluating Species Management Guidance and Monitoring Programs for the Great Basin in Nevada Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Forecasting Changes in Sagebrush Distribution and Abundance Under Climate Change: Integration of Spatial, Temporal, and Mechanistic Models Using Narrative Stories to Understand Traditional Ecological Knowledge in the Great Basin Walker River Paiute Tribe TEK Project Percent canopy cover of conifers within Nevada and northeastern California sage-grouse habitat (2017) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Groundwater-level altitude contours, 1982, middle Humboldt River basin, north-central Nevada (U.S. Geological Survey Water-Resources Investigations Report 98-4209) Adding Climate Smart Principles into Habitat Conservation Planning Development of a Regional Springsnail Conservation Strategy Composite Habitat Suitability Index Raster Dataset Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, May 2021, v1 04) Groundwater-level contours for Smith Valley and Mason Valley, Nevada, 2020 5. Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2022 (ver 6.0, July 1st, 2022) Seepage site data for the upper Humboldt River Basin, October 2008 and November 2009 04) Groundwater-level contours for Smith Valley and Mason Valley, Nevada, 2020 Walker River Paiute Tribe TEK Project Seepage site data for the upper Humboldt River Basin, October 2008 and November 2009 Composite Habitat Suitability Index Raster Dataset Groundwater-level altitude contours, 1982, middle Humboldt River basin, north-central Nevada (U.S. Geological Survey Water-Resources Investigations Report 98-4209) Modeling Effects of Climate Change on Cheatgrass Die-Off Areas in the Northern Great Basin Evaluating Species Management Guidance and Monitoring Programs for the Great Basin in Nevada Percent canopy cover of conifers within Nevada and northeastern California sage-grouse habitat (2017) Development of a Regional Springsnail Conservation Strategy Raven study site locations in the Great Basin, derived from survey locations 2007 - 2016 Using Narrative Stories to Understand Traditional Ecological Knowledge in the Great Basin Relations Among Cheatgrass, Fire, Climate, and Sensitive-Status Birds across the Great Basin Prediction of raven occurrence intersected with high impact areas for sage-grouse populations in the Great Basin, 2007-2016 (Fig. 5A) Predictions of raven occurrence in the absence of anthropogenic environmental effects in the Great Basin, 2007-2016 (Fig. 4B) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 4.5) Principal components of climate variation in the Desert Southwest for the future time period 2040-2070 (RCP 8.5) Forecasting Changes in Sagebrush Distribution and Abundance Under Climate Change: Integration of Spatial, Temporal, and Mechanistic Models Adding Climate Smart Principles into Habitat Conservation Planning Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, May 2021, v1 5. Early Estimates of Exotic Annual Grass (EAG) in the Sagebrush Biome, USA, 2022 (ver 6.0, July 1st, 2022)