Skip to main content
Advanced Search

Filters: Tags: groundwater (X)

2,077 results (37ms)   

Filters
Contacts (Less)
View Results as: JSON ATOM CSV
thumbnail
This data release pertains to a seepage investigation and dye tracing study conducted in the Big Creek watershed of Newton County, Arkansas. The seepage dataset includes geospatial files of discharge measurement points and zero-flow observations along with vector lines delineating losing and gaining stream reaches. The dye tracing dataset consists of geospatial files of monitoring sites, dye injection location, and dye flow paths. Hydrologic systems in karst environments have a high degree of interconnectivity between surface water and groundwater systems. Because of this interconnectivity, activities which occur on the surface in karst environments have a direct impact on the water quality and quantity of karst...
thumbnail
Groundwater from the Mississippi River Valley alluvial aquifer (MRVA) is a vital resource for agriculture and drinking-water supplies in the central United States. Water availability can be limited in some areas of the aquifer by high concentrations of trace elements, including manganese and arsenic. Boosted regression trees, a type of ensemble-tree machine-learning method, were used to predict manganese concentration and the probability of arsenic concentration exceeding a 10 µg/L threshold throughout the MRVA. Explanatory variables for the BRT models included attributes associated with well location and construction, surficial variables (such as hydrologic position and recharge), variables extracted from a MODFLOW-2005...
thumbnail
Concentrations of inorganic constituents, dissolved organic carbon (DOC), tritium, per- and polyfluoroalkyl substances (PFAS), volatile organic compounds (VOCs), and pharmaceuticals were measured in groundwater samples collected from 254 wells in 2019 and 2020. Concentrations of inorganic constituents, DOC, VOCs, and pharmaceuticals were measured at the U.S. Geological Survey (USGS) National Water Quality Laboratory in Lakewood, Colorado. Concentrations of tritium were measured at the USGS Tritium Laboratory in Menlo Park, California. Concentrations of PFAS were measured at SGS Laboratory in Orlando, Florida. In addition, several geospatial parameters were determined, including: percentages of selected land uses...
thumbnail
The temperature and surface geophysical data contained in this release have primarily been collected to support groundwater/surface water methods development, and to characterize the hydrogeological controls on native brook trout habitat. All data have been collected since 2010 along the Quashnet River corridor located on Cape Cod, MA, USA. Cape Cod is a peninsula in southeastern coastal Massachusetts, USA, composed primarily of highly permeable unconsolidated glacial moraine and outwash deposits. The largest of the Cape Cod sole-source aquifers occupies a western (landward) section of the peninsula, and is incised by several linear valleys that drain groundwater south to the Atlantic Ocean via baseflow-dominated...
thumbnail
The availability of groundwater-quality data for relatively deep wells (wells generally more than 300 feet deep) containing saline water (dissolved-solids concentrations greater than 2,000 milligrams per liter) is limited throughout the state of Texas. Water-quality samples are important for calibrating estimates of groundwater salinity derived from geophysical well logs. Water-quality data collected in 2021 from four wells completed in selected aquifers (Trinity, Carrizo-Wilcox, and Yegua-Jackson) in Texas are included in this data release.
thumbnail
An existing, three-dimensional, transient groundwater-flow model of the Upper Charles River Basin, eastern Massachusetts, was modified to evaluate alternative groundwater-withdrawal scenarios on water levels in Kingsbury Pond. The pond is hydraulically connected to the groundwater-flow system, and water levels in the pond fluctuate in response to recharge to the aquifer from precipitation and wastewater return flows through septic systems, to withdrawals from the aquifer at nearby wells, and to precipitation directly on the pond surface. Concerns about the effects of groundwater withdrawals on water levels in the pond prompted an investigation by the U.S. Geological Survey (USGS) in cooperation with the Massachusetts...
thumbnail
Globally, groundwater dependent ecosystems (GDEs) are increasingly vulnerable to groundwater extraction and land use practices. Groundwater supports these ecosystems by providing inflow, which can maintain water levels, water temperature, and chemistry necessary to sustain the biodiversity that they support. Many aquatic systems receive groundwater as a portion of base flow, and in some systems (e.g., springs, seeps, fens) the connection with groundwater is significant and important to the system’s integrity and persistence. Groundwater management decisions for human use may not consider ecological effects of those actions on GDEs, which rely on groundwater to maintain ecological function. This disconnect between...
thumbnail
The U.S. Geological Survey constructed a steady-state numerical groundwater flow model in cooperation with Des Moines Water Works (DMWW) to simulate groundwater flow conditions in the Des Moines River alluvial aquifer (DMRA) during winter low-flow conditions typical of December 2018-2020. The Des Moines River alluvial aquifer (DMRA) is an important source of water for Des Moines Water Works (DMWW), the municipal water utility that serves residential and commercial water needs in the city of Des Moines, Iowa and surrounding municipalities. A comprehensive understanding of groundwater flow processes in the DMRA is needed for DMWW to make decisions related to the management of this water resource. A three-layered model...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital hydrogeologic surface of the Midway Confining Unit in Alabama, Arkansas, Illinois, Kentucky, Missouri, Mississippi. The hydrogeologic unit dataset contains 414 rows and 394 columns representing 1-mile grid spacing. In general, limitations of data interpolation included areas of sparse geophysical log control points, log datums not clearly defined for some logs, unknown exact extent of each hydrogeologic unit in subcrop, interpolation...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Digital hydrogeologic surface of the Lower Claiborne Confining Unit in Alabama, Arkansas, Louisiana, Mississippi. The hydrogeologic unit dataset contains 414 rows and 394 columns representing 1-mile grid spacing. In general, limitations of data interpolation included areas of sparse geophysical log control points, log datums not clearly defined for some logs, unknown exact extent of each hydrogeologic unit in subcrop, interpolation...
thumbnail
A three-dimensional numerical groundwater flow model (MODFLOW-USG) was developed for the Wood River Valley (WRV) aquifer system, south-central Idaho, to evaluate groundwater and surface-water availability at the regional scale. The U.S. Geological Survey (USGS), in cooperation Idaho Department of Water Resources, used the transient groundwater flow model to simulate historical hydraulic head conditions from 1995 to 2010. This USGS data release contains all of the input and output files for the simulation described in the associated model documentation report (https://doi.org/10.3133/sir20165080).
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set represents the extent of the Snake River Plain aquifer system, which includes both the basaltic and basin-fill aquifers. This dataset does not represent the full extent of the basaltic and basin-fill aquifers aquifers. This data set represents the extent of the surficial aquifer within the Snake River aquifer system. This aquifer system is primarily located in Idaho.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents specific-yield ranges in the High Plains aquifer of the United States. The High Plains aquifer underlies 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Specific yield ranges from near zero to 30 percent (Gutentag and others, 1984). This data set was generated in ESRI ArcInfo Workstation Version...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2011. This digital...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, predevelopment (about 1950) to 2007. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota,...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the glacial aquifer system in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital dataset defines the spring 1961 water-table altitude for the California's Central Valley. It was used to initiate the water-level altitudes for the upper zones of the transient hydrologic model of the Central Valley flow system. The Central Valley encompasses an approximate 50,000 square-kilometer region of California. The complex hydrologic system of the Central Valley is simulated using the USGS numerical modeling...
Tags: Alameda County, Amador County, Butte County, CV-RASA, Calaveras County, All tags...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the extent of the Fox Hills aquifer in the Powder River and Williston structural basins.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This digital dataset defines the depth of the Corcoran Clay Member of the Tulare Formation. The complex hydrologic system of the Central Valley is simulated using the USGS numerical modeling code MODFLOW-FMP (Schmid and others, 2006b). This simulation is referred to here as the Central Valley Hydrologic Model (CVHM) (Faunt, 2009). Utilizing MODFLOW-FMP, the CVHM simulates groundwater and surface-water flow, irrigated agriculture,...


map background search result map search result map Temperature and geophysical data collected along the Quashnet River, Mashpee/Falmouth MA (ver. 2.0, March 2020) Machine-learning model predictions and rasters of arsenic and manganese in groundwater in the Mississippi River Valley alluvial aquifer Seepage investigation and dye tracing to characterize base flow stream behavior in Big Creek watershed, Newton County, Arkansas Geochemical and Geospatial Data for Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater Used as a Source of Drinking Water in the Eastern United States Water-Quality Data for Determination of Saline Groundwater in Selected Aquifers in Texas, 2021 Spring 1961 water table of California's Central Valley (from Williamson and others, 1989) Contours of Corcoran Clay Depth in feet from Page (1986) for the Central Valley Hydrologic Model (CVHM) MODFLOW-USG model of groundwater flow in the Wood River Valley aquifer system in Blaine County, Idaho Snake River Plain Basin-fill aquifer system Lower Claiborne Confining Unit: Alabama, Arkansas, Louisiana, Mississippi 2006-2008 Midway Confining Unit: Alabama, Arkansas, Illinois, Kentucky, Missouri, Mississippi 2006-2008 Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 Specific yield, High Plains aquifer Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 MODFLOW-NWT model used to simulate groundwater levels in the Des Moines River alluvial aquifer near Des Moines, Iowa Extent of the Fox Hills aquifer in the Powder River and Williston structural basins Thickness of the Upper Hell Creek hydrogeologic unit in the Powder River structural basin Distribution Models Predicting Groundwater Influenced Ecosystems in the Northeastern United States MODFLOW-2000 and Management-Optimization Models Used to Evaluate Alternative Groundwater-Withdrawal Scenarios on Water Levels in Kingsbury Pond, Upper Charles River Basin, Eastern Massachusetts Temperature and geophysical data collected along the Quashnet River, Mashpee/Falmouth MA (ver. 2.0, March 2020) MODFLOW-NWT model used to simulate groundwater levels in the Des Moines River alluvial aquifer near Des Moines, Iowa MODFLOW-USG model of groundwater flow in the Wood River Valley aquifer system in Blaine County, Idaho Contours of Corcoran Clay Depth in feet from Page (1986) for the Central Valley Hydrologic Model (CVHM) Snake River Plain Basin-fill aquifer system Spring 1961 water table of California's Central Valley (from Williamson and others, 1989) Thickness of the Upper Hell Creek hydrogeologic unit in the Powder River structural basin Machine-learning model predictions and rasters of arsenic and manganese in groundwater in the Mississippi River Valley alluvial aquifer Lower Claiborne Confining Unit: Alabama, Arkansas, Louisiana, Mississippi 2006-2008 Midway Confining Unit: Alabama, Arkansas, Illinois, Kentucky, Missouri, Mississippi 2006-2008 Water-Quality Data for Determination of Saline Groundwater in Selected Aquifers in Texas, 2021 Extent of the Fox Hills aquifer in the Powder River and Williston structural basins Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2007 Specific yield, High Plains aquifer Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, predevelopment (about 1950) to 2011 Distribution Models Predicting Groundwater Influenced Ecosystems in the Northeastern United States Geochemical and Geospatial Data for Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater Used as a Source of Drinking Water in the Eastern United States