Skip to main content
Advanced Search

Filters: Tags: groundwater (X) > partyWithName: Virginia L McGuire (X)

40 results (20ms)   

View Results as: JSON ATOM CSV
thumbnail
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2019. It was created using water-level measurements from 2,741 wells measured in both the predevelopment period (about 1950) and in 2019, the latest available static water level measured in 2015 to 2018 from 71 wells in New Mexico and using other published information on water-level change in areas with few water-level...
thumbnail
This dataset is the raster, in feet, of the potentiometric-surface map, spring 2018, Mississippi River Valley alluvial (MRVA) aquifer. The raster cell size is 1,000 meters; the raster altitude data was referenced to the North American Vertical Datum of 1988 (NAVD 88). The raster was interpolated using (1) most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages, and (2) potentiometric-surface contours.
thumbnail
This dataset is a point shapefile of wells measured for the potentiometric surface maps of the Mississippi River Valley alluvial aquifer (MRVA) in Spring 2016, 2018, and 2020. The data provided for each well considered in the applicable potentiometric surface map are the water-level date, altitude [relative to the North American vertical datum of 1988 (NAVD88)], a useYYYY code (which is positive if the water level was used in the potentiometric surface map for that year), a use comment (which is populated for water levels not used), and the water-level change values, for 2016-18, 2018-20, and 2016-20 for water levels with positive useYYYY codes for the applicable years. The data provided for each streamgage considered...
thumbnail
This dataset is a raster surface, in feet, of the depth to water, spring 2020, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters (3,280.8 ft). The raster was interpolated using (1) depth-to-water (GW_D2W) data from wells and (2) an assumed value of zero for depth to water at streamgages (SW_D2W) because the precise depth to groundwater at the streamgage is not known..The streamgage data is used only when it appears the regional aquifer and surface water are hydrologically connected.
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of water-level changes for the High Plains aquifer, 2013 to 2015. This digital dataset was created using water-level measurements from 7,529 wells measured in both 2013 and 2015. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
thumbnail
The High Plains aquifer extends from about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is comprised of water-level measurements from 7,698 wells measured in both 2015 and 2017, which were used to map water-level changes, 2015 to 2017. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000.
thumbnail
This dataset is a raster surface, in feet, of the depth to water, spring 2016, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters (3,280.8 ft). . The raster was interpolated using (1) depth-to-water (GW_D2W) data from wells and (2) an assumed value of zero for depth to water at streamgages (SW_D2W) because the precise depth to groundwater at the streamgage is not known. The streamgage data is used only when it appears the regional aquifer and surface water are hydrologically connected.
thumbnail
This dataset contains surface-water-altitude (SWA) data from streamgages that was used or considered to create a potentiometric-surface map for the Mississippi River Valley alluvial (MRVA) aquifer for spring 2018. The surface-water-altitude data was referenced to the North American Vertical Datum of 1988 (NAVD 88). The streamgages are measured continuously. The streamgage measurement that was used was from early April 2018 and is an estimate of the groundwater altitudes at the gage location. The resultant potentiometric-surface contours and raster represents the generalized central tendency for spring 2018, but it would not be useful for some purposes, such as for calibration of a groundwater-flow model for early...
thumbnail
This dataset contains the contours, in feet, of the potentiometric-surface, spring 2020, Mississippi River Valley alluvial aquifer (MRVA). The contours are referenced to the North American Vertical Datum of 1988 (NAVD 88). The contours were derived from most of the available groundwater-altitude (GWA) data from wells and surface-water-altitude (SWA) data from streamgages, measured in for spring 2020. The potentiometric contours ranged from 10 to 340 feet (3 to 104 meters) above NAVD 88. The regional direction of groundwater flow was generally towards the south-southwest, except in areas of groundwater-altitude depressions, where groundwater flows into the depressions, and near rivers, where groundwater flow generally...
thumbnail
The High Plains aquifer extends from south of about 32 degrees to almost 44 degrees north latitude and from about 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set is the supplemental water-level measurements from 1,897 wells located in Colorado, Kansas, Nebraska, Oklahoma, South Dakota, or Texas and measured in various time periods, which were used to historical water-level change values for predevelopment to 2011 to 2014 and approximate water-level change values from predevelopment to 2015 to substantiate the map of water-level changes, predevelopment...
thumbnail
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital dataset consists of a raster of water-level changes for the High Plains aquifer, predevelopment (about 1950) to 2017. It was created using water-level measurements from 2,928 wells measured in both the predevelopment period (about 1950) and in 2017, the latest available static water level measured in 2013 to 2016 from 63 wells in New Mexico and using other published information on water-level change in areas with few water-level...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
This dataset contains groundwater (GW)-altitude (ALT) data from wells that was used or considered to create a potentiometric-surface map for the Mississippi River Valley alluvial (MRVA) aquifer for spring 2018. The groundwater-altitude data was referenced to the North American Vertical Datum of 1988 (NAVD 88). Most of the wells were measured annually, but some wells were measured more than one time in a year and a small number of wells were measured continuously. Groundwater-altitude data were from wells measured in spring 2018. Spring-time measurements were preferred because water levels had generally recovered from pumping during the previous irrigation season and it was before pumping began for the current irrigation...
Groundwater-level data, in conjunction with attendant metadata and covariates (predictor variables) data, for the Mississippi River Valley alluvial aquifer (MRVA) are used to support statistical and process-based numerical modeling. This page represents a collection of groundwater-level data within the expanse of the Mississippi Alluvial Plain (MAP) (Painter and Westerman, 2018) and are derived from well-specific periods of record of discrete measurements and continuous water levels aggregated to daily statistics. The basic data structures are intended also to serve as interpretability standards for use by statistical software such as described by Asquith and Seanor (2019) and Asquith and others (2019).
thumbnail
The High Plains aquifer extends from approximately 32 to 44 degrees north latitude and 96 degrees 30 minutes to 106 degrees west longitude. The aquifer underlies about 175,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This dataset consists of a raster of estimated water-level changes for the High Plains aquifer from pre-irrigation season 2017 to pre-irrigation season 2019. This digital dataset was created using water-level measurements from 7,195 wells measured in both 2017 and 2019. The map was reviewed for consistency with the relevant data at a scale of 1:1,000,000. Negative raster-cell values correspond to decline in water level and positive...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
This dataset contains the contours, in feet, of the potentiometric-surface, spring 2018, Mississippi River Valley alluvial (MRVA) aquifer. The contours are referenced to the North American Vertical Datum of 1988 (NAVD 88). The contours were derived from most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages, measured in for spring 2018. The potentiometric contours ranged from 10 to 340 feet (3 to 104 meters) above NAVD 88. The regional direction of groundwater flow was generally towards the south-southwest, except in areas of groundwater-altitude depressions, where groundwater flows into the depressions, and near rivers, where groundwater flow generally parallels...
thumbnail
This dataset is the raster, in meters, of the potentiometric-surface map, spring 2018, Mississippi River Valley alluvial (MRVA) aquifer. The raster cell size is 1,000 meters; the raster was referenced to the North American Vertical Datum of 1988 (NAVD 88). The raster, in feet, was interpolated using most of the available groundwater-altitude data from wells, surface-water-altitude data from streamgages, and the potentiometric contours. Then the raster altitude data was converted to meters.
thumbnail
This dataset is the raster, in meters, of the potentiometric-surface map, spring 2020, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters; the raster was referenced to the North American Vertical Datum of 1988 (NAVD 88). The raster, in feet, was interpolated using most of the available groundwater-altitude (GWA) data from wells, surface-water-altitude (SWA) data from streamgages, and the potentiometric contours. Then the raster altitude data was converted to meters.
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...


map background search result map search result map (A3) Supplemental water-level change data used to substantiate the map of water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 (B1) Spatial data set of mapped water-level changes in the High Plains aquifer, 2013 to 2015 (b) Groundwater altitude data, from driller-measured wells, considered for the potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016 (c) Surface-water altitude data, from streamgages, considered for the potentiometric surface map, Mississippi River Valley alluvial aquifer, spring 2016 (e1) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in feet b_Surface_WaterPts Surface-water-altitude data, from streamgages, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 c_Pot2018Contours Spatial dataset of the potentiometric-surface contours, Mississippi River Valley alluvial aquifer, spring 2018, in feet d1_Pot2018RasterFt Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2018, raster format, in feet d2_Pot2018RasterM Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2018, raster format, in meters a_GroundwaterPts Groundwater-altitude data, from monitoring-networks wells, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet c_Spatial dataset of the potentiometric-surface contours, Mississippi River Valley alluvial aquifer, spring 2020, in feet d2_Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2020, raster format, in meters F01_hpwlcpd17t_Spatial data set of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2017 F05_hpwlcp1517pt Water-level change data used to map water-level changes in the High Plains aquifer, 2015 to 2017 F01_d2w2016 Depth to water, spring 2016, Mississippi River Valley alluvial aquifer, raster format, in feet F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 F04_hpwlc1719t_Raster dataset of mapped water-level changes in the High Plains aquifer, 2017 to 2019 (b) Groundwater altitude data, from driller-measured wells, considered for the potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016 a_GroundwaterPts Groundwater-altitude data, from monitoring-networks wells, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 c_Spatial dataset of the potentiometric-surface contours, Mississippi River Valley alluvial aquifer, spring 2020, in feet c_Pot2018Contours Spatial dataset of the potentiometric-surface contours, Mississippi River Valley alluvial aquifer, spring 2018, in feet b_Surface_WaterPts Surface-water-altitude data, from streamgages, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 (c) Surface-water altitude data, from streamgages, considered for the potentiometric surface map, Mississippi River Valley alluvial aquifer, spring 2016 (e1) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in feet F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet d2_Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2020, raster format, in meters F01_d2w2016 Depth to water, spring 2016, Mississippi River Valley alluvial aquifer, raster format, in feet F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet d1_Pot2018RasterFt Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2018, raster format, in feet d2_Pot2018RasterM Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2018, raster format, in meters (A3) Supplemental water-level change data used to substantiate the map of water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2015 F05_hpwlcp1517pt Water-level change data used to map water-level changes in the High Plains aquifer, 2015 to 2017 F01_hpwlcpd17t_Spatial data set of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2017 F01_hpwicpd19t_Raster dataset of mapped water-level changes in the High Plains aquifer, predevelopment (about 1950) to 2019 F04_hpwlc1719t_Raster dataset of mapped water-level changes in the High Plains aquifer, 2017 to 2019 (B1) Spatial data set of mapped water-level changes in the High Plains aquifer, 2013 to 2015