Skip to main content
Advanced Search

Filters: Tags: groundwater (X) > partyWithName: U.S. Geological Survey (X) > Extensions: Raster (X)

16 results (31ms)   

View Results as: JSON ATOM CSV
thumbnail
Raster showing change in water-table altitude between Fall of 2002 and Fall of 2015 in the alluvium in the Lower Arkansas River Valley, Southeast Colorado. Hereafter "fall" is defined as June 1 to November 30. All interpolation and geoprocessing was done using ArcGIS Desktop v10 (Environmental Systems Research Institute, 2011).
thumbnail
Raster showing change in water-table altitude between Fall of 2002 and Fall of 2008 in the alluvium in the Lower Arkansas River Valley, Southeast Colorado. Hereafter "fall" is defined as June 1 to November 30. All interpolation and geoprocessing was done using ArcGIS Desktop v10 (Environmental Systems Research Institute, 2011).
thumbnail
This archive contains the logistic mapping output vulnerability difference rasters at the conceptual well locations. Data are provided in rasters containing the differences between estimated probabilities of nitrate concentrations greater than 2 milligrams per liter at hypothetical 150 feet and 300 feet deep wells for sequential five-year categories when one or both of the predicted probabilities was equal to or greater than 50 percent.
thumbnail
Raster showing change in water-table altitude between Spring of 2008 and Spring of 2015 in the alluvium in the Lower Arkansas River Valley, Southeast Colorado. Hereafter "spring" is defined as the periods of January 1 to May 31, and December 1 to December 31. All interpolation and geoprocessing was done using ArcGIS Desktop v10 (Environmental Systems Research Institute, 2011).
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
The most widely used aquifer for industry and public supply in the Mississippi embayment in Arkansas, Louisiana, Mississippi, and Tennessee is the Sparta-Memphis aquifer. Decades of pumping from the Sparta-Memphis aquifer have affected ground-water levels throughout the Mississippi embayment. Regional assessments of water-level data from the aquifer are important to document regional water-level conditions and to develop a broad view of the effects of ground-water development and management on the sustainability and availability of the region's water supply. This information is useful to identify areas of water-level declines, identify cumulative areal declines that may cross State boundaries, evaluate the effectiveness...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) Ryals, G. N., 1980, Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980: U.S. Geological...
thumbnail
The potentiometric surface of the Sparta Sand in northern Louisiana is shown by contours on four maps. Maps for 1900, 1965 , and spring 1975 are generalized, small-scale maps from previously published reports. The spring 1980 map (1:500,000) is based on measurements in 144 wells and includes the southern tier of counties in southern Arkansas. The map shows regional effects of pumping from the Sparta Sand and effects of local pumping centers at Magnolia and El Dorado, Ark., and at Minden, Ruston, Jonesboro-Hodge, Winnfield, Bastrop, and in the Monroe area of Louisiana. (USGS) First release: April, 2019; revised April 2021 (version 1.1). The previous version can be obtained by contacting the USGS Lower Mississippi-Gulf...
thumbnail
This data set contains mean annual recharge due to infiltration of precipitation, in inches (x 1000), within the upper Umatilla River Basin, Oregon, for calendar years 1981 - 2010. Recharge due to infiltration of precipitation is estimated using a regression method developed by Bauer and Vaccaro (1990) that relates annual recharge to annual precipitation. Gridded mean annual precipitation for years 1981 - 2010 was provided by the Oregon State University PRISM Climate Group. References: Bauer, H.H., and Vaccaro, J.J., 1990, Estimates of ground-water recharge to the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho, for predevelopment and current land-use conditions: U.S. Geological Survey...
thumbnail
Raster showing change in water-table altitude between Spring of 2002 and Spring of 2015 in the alluvium in the Lower Arkansas River Valley, Southeast Colorado. Hereafter "spring" is defined as the periods of January 1 to May 31, and December 1 to December 31. All interpolation and geoprocessing was done using ArcGIS Desktop v10 (Environmental Systems Research Institute, 2011).
thumbnail
Raster showing change in water-table altitude between Fall of 2008 and Fall of 2015 in the alluvium in the Lower Arkansas River Valley, Southeast Colorado. Hereafter "fall" is defined as June 1 to November 30. All interpolation and geoprocessing was done using ArcGIS Desktop v10 (Environmental Systems Research Institute, 2011).
thumbnail
Raster showing change in water-table altitude between Spring of 2002 and Spring of 2008 in the alluvium in the Lower Arkansas River Valley, Southeast Colorado. Hereafter "spring" is defined as the periods of January 1 to May 31, and December 1 to December 31. All interpolation and geoprocessing was done using ArcGIS Desktop v10 (Environmental Systems Research Institute, 2011).
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...
thumbnail
This archive contains the logistic mapping vulnerability output rasters at the conceptual well locations. Data are provided in rasters containing the estimated probabilities of nitrate concentrations greater than 2 milligrams per liter at hypothetical 150-foot-deep and 300-foot-deep wells.
thumbnail
This dataset is the result of measurements of groundwater levels in the Equus Beds aquifer near Wichita, Kansas, in January 2016. Potentiometric surfaces are interpolated for the shallow and deep parts of the aquifer, and rasters of the potentiometric surfaces are included in this data release. Wells were classified as being screened in the shallow or deep parts of the aquifer based on station name (some wells have a layer identifier in the station name) or, if no indication of aquifer layer was given in the station name, based on the depth of the well; wells with depths less than 80 feet below land surface were classified as shallow and wells with depths of 80 feet or deeper were classified as deep. Contours with...


    map background search result map search result map Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow raster) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep raster) Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Fall 2002 to Fall 2008 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Fall 2008 to Fall 2015 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Fall 2002 to Fall 2015 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Spring 2002 to Spring 2008 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Spring 2002 to Spring 2015 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Spring 2008 to Spring 2015 Mean annual recharge from precipitation, inches (x 1000), upper Umatilla River Basin, Oregon, 1981 - 2010 Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1980 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021) Output vulnerability rasters from logistic mapping at the conceptual well locations for a study of groundwater vulnerability to elevated nitrates in the Puget Sound Basin, Washington, 2000–19 Output vulnerability difference rasters from logistic mapping at the conceptual well locations for a study of groundwater vulnerability to elevated nitrates in the Puget Sound Basin, Washington, 2000–19 Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (deep raster) Groundwater Levels in the Equus Beds Aquifer near Wichita, Kansas, January 2016 (shallow raster) Mean annual recharge from precipitation, inches (x 1000), upper Umatilla River Basin, Oregon, 1981 - 2010 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Fall 2002 to Fall 2008 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Fall 2008 to Fall 2015 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Fall 2002 to Fall 2015 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Spring 2002 to Spring 2008 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Spring 2002 to Spring 2015 Change in water-table altitude in the alluvium in the Lower Arkansas River Valley, Southeast Colorado, Spring 2008 to Spring 2015 Digitized Contours of Georeferenced Plate 1900 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" Digitized Contours from Georeferenced Plate 1965 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1975 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Digitized Contours from Georeferenced Plate 1980 from "Potentiometric maps of the Sparta Sand, northern Louisiana and southern Arkansas, 1900, 1965, 1975, and 1980" (Ryals, 1980; version 1.1, April 2021) Output vulnerability difference rasters from logistic mapping at the conceptual well locations for a study of groundwater vulnerability to elevated nitrates in the Puget Sound Basin, Washington, 2000–19 Output vulnerability rasters from logistic mapping at the conceptual well locations for a study of groundwater vulnerability to elevated nitrates in the Puget Sound Basin, Washington, 2000–19 Digitized Contour from Georeferenced plate 2007 from "Potentiometric Surface in the Sparta-Memphis Aquifer of the Mississippi Embayment, Spring 2007" (Shrader, 2008; version 1.1, April 2021)