Skip to main content
Advanced Search

Filters: Tags: groundwater (X)

2,077 results (209ms)   

Filters
Date Range
Extensions (Less)
Types (Less)
Contacts (Less)
Categories (Less)
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
A new groundwater flow model for western Chippewa County, Wisconsin has been developed by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS). An analytic element GFLOW model was constructed and calibrated to generate hydraulic boundary conditions for the perimeter of the more detailed three-dimensional MODFLOW-NWT model. This three-dimensional model uses the USGS MODFLOW-NWT finite difference code, a standalone version of MODFLOW-2005 that incorporates the Newton (NWT) solver. The model conceptualizes the hydrogeology of western Chippewa County as a six-layer system which includes several hydrostratigraphic units. The model explicitly simulates groundwater-surface-water...
thumbnail
A GFLOW model was constructed of the Park Falls Unit as part of a larger study of the Chequamegon-Nicolet National Forest. The model supports the goals of the project by providing improved characterization of the groundwater/surface-water system and a tool to evaluate the sensitivity of hydrologic flows and temperature to future climate and land use changes.
thumbnail
A regional groundwater flow model (https://pubs.usgs.gov/sir/2009/5244/) was updated to reflect 2017 pumping conditions in the Tri-County Region covering most of Clinton, Eaton, and Ingham Counties, Michigan. This model was developed to simulate the regional hydrologic system in Tri-County area and continues to be used for planning and protection of area water supplies. Revised contributing area delineations in response to recent pumping conditions were needed for local wellhead protection area programs. The model was calibrated to water level observations for 2017 from well driller logs, average water levels for 2012-17 from active USGS observation wells, and estimated baseflow for 2012-16 from USGS streamgaging...
thumbnail
This groundwater-flow model archive contains all of the input and output files for an inset MODFLOW-NWT model extracted from the northern (Wisconsin) half of a published USGS steady-state regional model of the Upper Fox River Basin in the U.S. Upper Midwest. The construction and details of the published USGS steady-state model of the Upper Fox River Basin is outlined in the U.S. Geological Survey Scientific Investigations Report 2018-5038 (https://doi.org/10.3133/sir20185038). The regional model is archived in the data release at https://doi.org/10.5066/F76D5R5V. The extracted model was used to demonstrate an innovative new method for delinating fen distribution and discharge using the MODFLOW UZF package. The extracted...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. Baseflow is the portion of streamflow derived from groundwater flow. It is an important component of the groundwater budget, and can be estimated using known total streamflow at given points through time. Daily streamflow data was collected from 25 streamflow gaging stations across the northern High Plains Groundwater Availability Study (NHPGAS) area from the National Water Information System (NWIS) and the Nebraska Department of...
thumbnail
The integrated hydrologic-flow model, called the Osage Nation Integrated Hydrologic Model (ONIHM) was developed to assess water availability in the Osage Nation. This model was developed using the MODFLOW-One Water Hydrologic Model (MF-OWHM) code. The ONIHM was discretized into an orthogonal grid of 276 rows and 289 columns, and each grid cell measured 1,312.34 feet (ft) per side, with eight variably thick vertical layers that represented the alluvial and bedrock aquifers within the study area, including the Vamoosa-Ada aquifer and other minor bedrock aquifers deposited during the Pennsylvanian Period. The ONIHM was delineated into 128 water-balance subregions based on surface watersheds, land cover, and water supply...
thumbnail
A soil-water balance model (SWB) was developed to estimate potential recharge and irrigation water demand from the groundwater flow system in Florida and parts of Georgia, Alabama, and South Carolina for the period 1895 through 2010. This SWB model executable code detailed in the report SWB—A Modified Thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge; Chapter 31 of Section A, Groundwater, of Book 6, Modeling Techniques By S.M. Westenbroek, V.A. Kelson,W.R. Dripps,R.J. Hunt, and K.R. Bradbury (https://pubs.usgs.gov/tm/tm6-a31/) The SWB model was not calibrated; however, various water budget components from the model output compared reasonably well with other estimates including irrigation...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This geodatabase contains the spatial datasets that represent the Edwards-Trinity aquifer system in the States of Arkansas, Oklahoma, and Texas. Included are: (1) polygon extents; datasets that represent the aquifer system extent, the entire extent subdivided into subareas or subunits, and any polygon extents of special interest (no data available, areas underlying other aquifers, anomalies, for example), (2) raster datasets for...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies approximately 112.6 million acres (176,000 square miles) in parts of eight States: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer's saturated thickness ranges from near zero to about 1,200 feet (Weeks and Gutentag, 1981). Water-level...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. The water-budget-components geodatabase contains selected data from maps in the, "Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 through 1949 and 2000 through 2009" report (Stanton and others, 2011). Data were collected and synthesized from existing climate models including the Parameter-Elevation Regressions on Independent Slopes Model (PRISM) (Daly and others, 1994), and the Snow accumulation and...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set represents the extent of the Southeastern Coastal Plain aquifer system in Kentucky, Tennessee, Mississippi, Alabama, Georgia, and South Carolina.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. This data set represents the extent of the North Atlantic Coastal Plain aquifer system in North Carolina, Virginia, Maryland, Deleware, and New Jersey.
This data release includes a polygon shapefile of grid cells attributed with values representing the simulated base-flow, evapotranspiration, and groundwater-storage depletions as a percentage of hypothetical well pumpage for the 2011-2060 time period. Depletions were simulated by the Phase-Three Elkhorn-Loup Model (ELM), constructed using MODFLOW-NWT (Niswonger and others, 2011). Each polygon represents one model grid cell, with pumping specified from either layer one or layer two of the model. All values are estimates and approximations. The phase three ELM simulated the High Plains aquifer in north-central Nebraska from predevelopment (pre-1895) through 2060 (Flynn and Stanton, 2018). The simulation was calibrated...
thumbnail
A previously published MODFLOW-NWT groundwater-flow model for the Rush Springs aquifer in western Oklahoma (using 1 steady state stress period followed by 444 monthly stress periods representing 1979-2015; Ellis, 2018a) was used as the basis of several groundwater-use scenarios. The model is a 3-layer model including the Cloud Chief formation (confining unit of the Rush Springs aquifer), alluvial and terrace deposits, and the Rush Springs aquifer. The scenarios were used to assess the effects of increasing groundwater withdrawals from the Rush Springs aquifer on base flows to streams that flow into Fort Cobb Reservoir to address concerns over groundwater use reducing inflows to the lake. The effects of groundwater...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
This community serves to document data and analysis collected by researchers within the Upper Midwest Water Science Center whose mission is to collect high-quality hydrologic data and conduct unbiased, scientifically sound studies of water resources within the Great Lakes and Upper Mississippi Basins. We strive to meet the changing needs of those who use our information—from the distribution, availability, and quality of our water resources to topic-oriented research that addresses current hydrological issues.
What are current conditions for important park natural resources? What are the critical data and knowledge gaps? What are some of the factors that are influencing park resource conditions? Natural Resource Condition Assessments (NRCAs) evaluate and report on the above for a subset of important natural resources in national park units (hereafter, parks). Focal study resources and indicators are selected on a park-by-park basis, guided by use of structured resource assessment and reporting frameworks. Considerations include park resource setting and enabling legislation (what are this park's most important natural resources?) and presently available data and expertise (what can be evaluated at this time?). In addition...
thumbnail
Natural landscapes in the Southwestern United States are changing. In recent decades, rising temperatures and drought have led to drier conditions, contributed to large-scale ecological impacts, and affected many plant and animal species across the region. The current and future trajectory of climate change underscores the need for managers and conservation professionals to understand the impacts of these patterns on natural resources. In this regional assessment of the Southwest Climate Change Initiative, we evaluate changes in annual average temperatures from 1951–2006 across major habitats and large watersheds and compare these changes to the number of species of conservation concern that are found within these...
thumbnail
El Espacio Digital Geográfico (ESDIG) de la SEMARNAT, muestra en mapas información sobre las características ambientales y sociales del país en temas como vegetación, uso del suelo, cuerpos de agua, suelos, clima, población, entre otros, así como de los resultados de programas ambientales y sociales dedicados al aprovechamiento, conservación y recuperación de los ecosistemas naturales de México. Los mapas desplegados son extraídos de la base de datos geográfica del SNIARN. La información contenida en ésta base ha sido generada por diferentes áreas de la Semarnat, sus órganos desconcentrados y descentralizados, así como también por el INEGI y diversas dependencias del Gobierno Federal.


map background search result map search result map Natural Resource Condition Assessments Managing Changing Landscapes in the Southwestern United States Espacio Digital Geográfico (ESDIG) Upper Midwest Water Science Center Percentage of Hypothetical Well Pumpage Causing Depletions to Simulated Base Flow, Evapotranspiration, and Groundwater Storage in the Elkhorn and Loup River Basins, 2011 through 2060 Airborne EM, magnetic, and radiometric survey data North Atlantic Coastal Plain aquifer system Southeastern Coastal Plain aquifer system Soil-Water Balance model datasets used to estimate groundwater recharge in Florida and parts of Georgia, Alabama, and South Carolina, 1895-2010 Geodatabase of the available top and bottom surface datasets that represent the Edwards-Trinity aquifer system, Arkansas, Oklahoma, and Texas DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Saturated thickness, High Plains aquifer, 2009 MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation DS-777 Spatial Location of Gages with Total Flow and estimated Base Flow, for the Predevelopment Simulation Period for the Northern High Plains Groundwater-Flow Model in Parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming MODFLOW-NWT model used to develop a simple method for simulating groundwater interactions with fens to forecast development effects MODFLOW-NWT model data sets for simulating effects of groundwater withdrawals on streamflows in Northwestern Chippewa County MODFLOW-2000 and MODPATH models for simulations used to delineate contributing areas for 2017 pumping conditions to selected wells in Ingham County, Michigan: U.S. Geological Survey data release GFLOW groundwater flow model for the Park Falls Unit of the Chequamegon-Nicolet National Forest, Wisconsin MODFLOW-NWT model used to evaluate groundwater withdrawal scenarios for the Rush Springs aquifer upgradient from the Fort Cobb Reservoir, western Oklahoma, 1979-2015, including streamflow, base flow, and precipitation statistics Airborne EM, magnetic, and radiometric survey data MODFLOW-NWT model data sets for simulating effects of groundwater withdrawals on streamflows in Northwestern Chippewa County GFLOW groundwater flow model for the Park Falls Unit of the Chequamegon-Nicolet National Forest, Wisconsin MODFLOW-NWT model used to develop a simple method for simulating groundwater interactions with fens to forecast development effects MODFLOW-2000 and MODPATH models for simulations used to delineate contributing areas for 2017 pumping conditions to selected wells in Ingham County, Michigan: U.S. Geological Survey data release MODFLOW-One Water Hydrologic Model integrated hydrologic-flow model used to evaluate water availability in the Osage Nation MODFLOW-NWT model used to evaluate groundwater withdrawal scenarios for the Rush Springs aquifer upgradient from the Fort Cobb Reservoir, western Oklahoma, 1979-2015, including streamflow, base flow, and precipitation statistics Percentage of Hypothetical Well Pumpage Causing Depletions to Simulated Base Flow, Evapotranspiration, and Groundwater Storage in the Elkhorn and Loup River Basins, 2011 through 2060 DS-777 Spatial Location of Gages with Total Flow and estimated Base Flow, for the Predevelopment Simulation Period for the Northern High Plains Groundwater-Flow Model in Parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming North Atlantic Coastal Plain aquifer system Geodatabase of the available top and bottom surface datasets that represent the Edwards-Trinity aquifer system, Arkansas, Oklahoma, and Texas Southeastern Coastal Plain aquifer system Soil-Water Balance model datasets used to estimate groundwater recharge in Florida and parts of Georgia, Alabama, and South Carolina, 1895-2010 Saturated thickness, High Plains aquifer, 2009 DS-777 Average Annual Precipitation Data, 2000 to 2009, in inches estimated from an Inverse-Distance-Weighted (IDW) interpolation, for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming DS-777 Average Annual Potential Evapotranspiration, 2000 to 2009, in inches estimated from the National Weather Service (NWS) Snow Accumulation and Ablation (SNOW-17) Model for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming Managing Changing Landscapes in the Southwestern United States Upper Midwest Water Science Center Espacio Digital Geográfico (ESDIG) Natural Resource Condition Assessments