Skip to main content
Advanced Search

Filters: Tags: habitat model (X) > partyWithName: Conservation Biology Institute (X)

11 results (36ms)   

View Results as: JSON ATOM CSV
thumbnail
This dataset depicts Lynx (Lynx canadensis) habitat in the Northern Appalachians predicted using the spatially explicit population model PATCH under the population cycling only in Gaspe (core area) plus trapping scenario (B2; Carroll 2007). This dataset represents one of several scenarios testing the interacting effects of population cycling, trapping, territory size, and climate change on lynx populations. Static habitat suitability models for lynx were fed through PATCH to predict source and sink habitat areas across the landscape. The static models for lynx were created based on a logistic regression model of reported lynx locations against the proportion of the landscape in deciduous forest cover and annual...
thumbnail
This dataset depicts Lynx (Lynx canadensis) habitat in the Northern Appalachians predicted using the spatially explicit population model PATCH under the population cycling only in Gaspe (core area) plus 36 square kilometer territory size (compared to 90 square kilometer territory) scenario (B136; Carroll 2007). This dataset represents one of several scenarios testing the interacting effects of population cycling, trapping, territory size, and climate change on lynx populations. Static habitat suitability models for lynx were fed through PATCH to predict source and sink habitat areas across the landscape. The static models for lynx were created based on a logistic regression model of reported lynx locations against...
thumbnail
This dataset depicts Lynx (Lynx canadensis) habitat in the Northern Appalachians predicted using the spatially explicit population model PATCH under the no population cycling plus trapping plus 36 square kilometer territory size (compared to 90 square kilometer territory) scenario (A236; Carroll 2007). This dataset represents one of several scenarios testing the interacting effects of population cycling, trapping, territory size, and climate change on lynx populations. Static habitat suitability models for lynx were fed through PATCH to predict source and sink habitat areas across the landscape. The static models for lynx were created based on a logistic regression model of reported lynx locations against the proportion...
thumbnail
This dataset depicts Lynx (Lynx canadensis) habitat in the Northern Appalachians predicted using the spatially explicit population model PATCH under the population cycling only in Gaspe (core area) scenario (B1; Carroll 2007). This dataset represents one of several scenarios testing the interacting effects of population cycling, trapping, territory size, and climate change on lynx populations. Static habitat suitability models for lynx were fed through PATCH to predict source and sink habitat areas across the landscape. The static models for lynx were created based on a logistic regression model of reported lynx locations against the proportion of the landscape in deciduous forest cover and annual snowfall. Demographic...
thumbnail
This dataset shows simulated fisher territory occupancy for a study area the southern Sierra Nevada range from the Extreme Fire Regime plus No Treatment scenario (Scheller and others 2008). Simulations were conducted using the spatially dynamic population model PATCH coupled to the forest succession and disturbance model LANDIS-II. Fisher occupancy is represented as the average number of females per 860 hectare hexagon. Habitat quality was derived from LANDIS-II simulated vegetation dynamics and was used to drive spatially-explicit demographic dynamics in PATCH> The baseline fire regime is derived from the previous 20 years of fire data. The extreme fire regime is a purely hypothetical fire regime intended to produce...
thumbnail
This dataset depicts Lynx (Lynx canadensis) habitat in the Northern Appalachians predicted using the spatially explicit population model PATCH under the population cycling only in Gaspe (core area) plus climate change scenario (FB1; Carroll 2007). This dataset represents one of several scenarios testing the interacting effects of population cycling, trapping, territory size, and climate change on lynx populations. Static habitat suitability models for lynx were fed through PATCH to predict source and sink habitat areas across the landscape. The static models for lynx were created based on a logistic regression model of reported lynx locations against the proportion of the landscape in deciduous forest cover and...
thumbnail
This dataset shows simulated fisher territory occupancy for a study area the southern Sierra Nevada range from the Baseline Fire Regime plus No Treatment scenario (Scheller and others 2008). Simulations were conducted using the spatially dynamic population model PATCH coupled to the forest succession and disturbance model LANDIS-II. Fisher occupancy is represented as the average number of females per 860 hectare hexagon. Habitat quality was derived from LANDIS-II simulated vegetation dynamics and was used to drive spatially-explicit demographic dynamics in PATCH> The baseline fire regime is derived from the previous 20 years of fire data. The extreme fire regime is a purely hypothetical fire regime intended to produce...
thumbnail
This dataset depicts Lynx (Lynx canadensis) habitat in the Northern Appalachians predicted using the spatially explicit population model PATCH under the population cycling plus 36 square kilometer territory size (compared to 90 square kilometer territory) scenario (B1; Carroll 2007). This dataset represents one of several scenarios testing the interacting effects of population cycling, trapping, territory size, and climate change on lynx populations. Static habitat suitability models for lynx were fed through PATCH to predict source and sink habitat areas across the landscape. The static models for lynx were created based on a logistic regression model of reported lynx locations against the proportion of the landscape...
thumbnail
This dataset depicts Lynx (Lynx canadensis) habitat in the Northern Appalachians predicted using the spatially explicit population model PATCH under the population cycling only in Gaspe (core area) plus trapping plus climate change scenario (FB2; Carroll 2007). This dataset represents one of several scenarios testing the interacting effects of population cycling, trapping, territory size, and climate change on lynx populations. Static habitat suitability models for lynx were fed through PATCH to predict source and sink habitat areas across the landscape. The static models for lynx were created based on a logistic regression model of reported lynx locations against the proportion of the landscape in deciduous forest...
thumbnail
This dataset shows simulated fisher territory occupancy for a study area the southern Sierra Nevada range from the Baseline Fire Regime plus Moderate Intensity Treatment over 8% of the treatable area scenario (Scheller and others 2008). Simulations were conducted using the spatially dynamic population model PATCH coupled to the forest succession and disturbance model LANDIS-II. Fisher occupancy is represented as the average number of females per 860 hectare hexagon. Habitat quality was derived from LANDIS-II simulated vegetation dynamics and was used to drive spatially-explicit demographic dynamics in PATCH. The baseline fire regime is derived from the previous 20 years of fire data. The extreme fire regime is a...
thumbnail
This dataset shows simulated fisher territory occupancy for a study area the southern Sierra Nevada range from the Extreme Fire Regime plus Moderate Intensity Treatment over 8% of the treatable area scenario (Scheller and others 2008). Simulations were conducted using the spatially dynamic population model PATCH coupled to the forest succession and disturbance model LANDIS-II. Fisher occupancy is represented as the average number of females per 860 hectare hexagon. Habitat quality was derived from LANDIS-II simulated vegetation dynamics and was used to drive spatially-explicit demographic dynamics in PATCH. The baseline fire regime is derived from the previous 20 years of fire data. The extreme fire regime is a...


    map background search result map search result map Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Trapping + Climate Change Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Climate Change Scenario Predicted Lynx Habitat in the Northern Appalachians: Population Cycling + Smaller Territory Size Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Smaller Territory Size Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Trapping Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe Scenario Predicted Lynx Habitat in the Northern Appalachians: No Cycling + Trapping + Smaller Territory Size Scenario Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Baseline Fire Regime + No Treatment Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Baseline Fire Regime + Moderate Treatment Intensity over 8% Area Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Extreme Fire Regime + No Treatment Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Extreme Fire Regime + Moderate Treatment Intensity over 8% Area Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Extreme Fire Regime + Moderate Treatment Intensity over 8% Area Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Baseline Fire Regime + No Treatment Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Extreme Fire Regime + No Treatment Sierra Nevada (California, USA) Simulated Fisher Territory Occupancy - Baseline Fire Regime + Moderate Treatment Intensity over 8% Area Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Trapping + Climate Change Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Climate Change Scenario Predicted Lynx Habitat in the Northern Appalachians: Population Cycling + Smaller Territory Size Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Smaller Territory Size Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe + Trapping Scenario Predicted Lynx Habitat in the Northern Appalachians: Cycling in Gaspe Scenario Predicted Lynx Habitat in the Northern Appalachians: No Cycling + Trapping + Smaller Territory Size Scenario