Skip to main content
Advanced Search

Filters: Tags: landsat (X)

384 results (13ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
The National Park Service (NPS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. All fires reported as greater than 1,000 acres in the western U.S. and greater than 500 acres in the eastern U.S. are mapped across all ownerships. MTBS produces a series of geospatial and tabular data for analysis at a range of spatial, temporal, and thematic...
thumbnail
These data products are preliminary burn severity assessments derived from data obtained from suitable imagery (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned...
thumbnail
This product ("Prairie fires") presents burned area boundaries for The Flint Hills Ecoregion (KS and OK), one of the most fire prone ecosystems in the United States where hundreds of thousands of acres burn annually as prescribed fire and wildfire. The prairie fire products provide the extent of larger prairie fires in the Flint Hills to record the occurrence of fire and can be used to identify individual burned areas within the perimeters. This product is published to provide fire information of the most fire prone ecosystems to individuals and land management communities for assessing burn extent and impacts on a time sensitive basis. The methods used to produce the prairie fire products from 2019 to present are...
thumbnail
This map layer is a vector polygon shapefile of the perimeters of all currently inventoried fires occurring between calendar year 2021 and 2021 that do not meet standard MTBS size criteria. These data are published to augment the data that are available from the MTBS program. This product was produced using the methods of the Monitoring Trends in Burn Severity Program (MTBS); however, these fires do not meet the size criteria for a standard MTBS assessment. The MTBS Program assesses the frequency, extent, and magnitude (size and severity) of all large wildland fires (wildfires and prescribed fires) in the conterminous United States (CONUS), Alaska, Hawaii, and Puerto Rico for the period 1984 and beyond. MTBS typically...
thumbnail
The U. S. Fish and Wildlife Service (FWS) requests burn severity assessments through an agreement with the U.S. Geological Survey (USGS) to be completed by analysts with the Monitoring Trends in Burn Severity (MTBS) Program. These data products are burned area boundary shapefiles derived from post-fire sensor data (including Landsat TM, Landsat ETM+, Landsat OLI). The pre-fire and post-fire subsets included were used to create Normalized Burn Ratio (NBR) and then a differenced Normalized Burn Ratio (dNBR) image. The objective of this assessment was to generate burned area boundaries for each fire. Data bundles also include post-fire subset, pre-fire subset, NBR, and dNBR images. This map layer is a thematic raster...
Level 1A Raw Image Data from SPOT 5 and SPOT 4 satellite. These images were used to create the orthoimages for the product GeoBase Orthoimage 2005-2010. Images of Raw Imagery GeoBase 2005-2010 product are raster digital date coming from SPOT 4 and SPOT 5 satellites that contain a panchromatic band with 10 meter pixels and four multispectral bands with 20 meter pixels. These images were used to produce the orthoimages of the GeoBase Orthoimage 2005-2010 product. These images are not georeferenced. The main objective of the project is to produce a complete set of raw images covering Canada's landmass over a five-year period, from May 2005 to October 2010. The goal is also to promote the use of geomatics and education...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the folder there are 8 raster tiffs. 1. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit i. Band 1 of the Tiff is Band 3 (Red) of Landsat ii. Band 2 of the Tiff is Band 4 (NIR) of Landsat iii. Band 3 of...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the folder there are 8 raster tiffs. 1. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit i. Band 1 of the Tiff is Band 3 (Red) of Landsat ii. Band 2 of the Tiff is Band 4 (NIR) of Landsat iii. Band 3 of...
thumbnail
To determine if invasive annual grasses increased around energy developments after the construction phase, we calculated an invasives index using Landsat TM and ETM+ imagery for a 34-year time period (1985-2018) and assessed trends for 1,755 wind turbines (from the U.S. Wind Turbine Database) installed between 1988 and 2013 in the southern California desert. The index uses the maximum normalized difference vegetation index (NDVI) for early season greenness (January-June), and mean NDVI (July-October) for the later dry season. We estimated the relative cover of invasive annuals each year at turbine locations and control sites and tested for changes before and after each turbine was installed. These data were used...
This is the USGS Earth Resources and Science (EROS) Center catalog and repository space. This space primarily supports science projects by providing a place to organize and publicly release data that support science information products. The EROS Center studies land change and produces land change data products used by researchers, resource managers, and policy makers across the nation and around the world.
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after wildfire by providing habitat and seed sources. With increasing fire activity, there is speculation that fire intensity and...
thumbnail
The study's goal was to downscale 2013 250-m expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) Normalized Difference Vegetation Index (NDVI) to 30 m (Gu, Y. and Wylie, B.K., 2015, Developing a 30-m grassland productivity estimation map for central Nebraska using 250-m MODIS and 30-m Landsat-8 observations, Remote Sensing of Environment, v. 171, p. 291-298)using 2013 Landsat 8 data. The eMODIS NDVI was downscaled for four periods: mid spring, early summer, late summer and mid fall. The objective was to capture phenologies during periods that correspond to 1) annual grass growth, 2) annual grass senescence, 3) the optimal NDVI profile separation between sagebrush and other shrubs in the region, and...
thumbnail
This data release is comprised of tidal marsh biomass data and spatial predictions of peak biomass and Julian day of peak biomass using data from the Landsat archive. Aboveground biomass dry weight of mixed-species plots (25x50 cm) at a tidal marsh in Willapa Bay, Washington were used to establish a relationship between biomass and tasseled cap greeness (TCG). The julian day of annual peak greenness and the value of annual peak greenness for 32 years at Bandon National Wildlife Refuge (NWR), Grays Harbor NWR, and Nisqually NWR was calculated by fitting a Gaussian function to the TCG values for a given year. The value of each 30 meter pixel is the Julian day of maximum predicted TCG or the maximum predicted TCG....
thumbnail
To improve understanding of the distribution of important, ephemeral wetland habitats across the Great Plains, we documented the occurrence and distribution of surface water in playa wetland complexes for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. Years of research on playas has yielded multiple mechanisms and projections for sub-regions of the LCC area, but a complete, region-wide inventory and assessment has not been completed. This information is important because it informs habitat and population managers about the timing and location of habitat availability. Data representing the presence of water, percent of the area inundated with water, and the spatial...
thumbnail
These data can be used in a geographic information system (GIS) for any number of purposes such as assessing wildlife habitat, water quality, pesticide runoff, land use change, etc. The State data sets are provided with a 300 meter buffer beyond the State border to faciliate combining the State files into larger regions. The user must have a firm understanding of how the datasets were compiled and the resulting limitations of these data. The National Land Cover Dataset was compiled from Landsat satellite TM imagery (circa 1992) with a spatial resolution of 30 meters and supplemented by various ancillary data (where available). The analysis and interpretation of the satellite imagery was conducted using very large,...


map background search result map search result map National Land Cover Data Set 1992 for Wyoming 30 meter Estimating downscaled eMODIS NDVI using Landsat 8 in the central Great Basin shrub steppe Data for climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes Landsat classification of surface water for multiple seasons to monitor inundation of playa wetlands Data supporting Landsat time series assessment of invasive annual grasses following energy development Earth Resources Observation and Science Center (EROS) National Park Service Thematic Burn Severity Mosaic in 2018 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 2013 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 1996 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 1995 (ver. 6.0, January 2024) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 (ver. 6.0, January 2024) Prairie Fire Assessment of Fire Occurrence Dataset (FOD) points location (ver. 6.0, January 2024) Undersized Fire Mapping Program Burned Area Boundaries (ver. 5.0, October 2023) US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1995 (ver. 6.0, January 2024) Data for climate-related variation in plant peak biomass and growth phenology across Pacific Northwest tidal marshes Data supporting Landsat time series assessment of invasive annual grasses following energy development National Land Cover Data Set 1992 for Wyoming 30 meter Estimating downscaled eMODIS NDVI using Landsat 8 in the central Great Basin shrub steppe Landsat classification of surface water for multiple seasons to monitor inundation of playa wetlands US Fish and Wildlife Service Fire Atlas- Burn Severity Mosaic for CONUS in 1995 (ver. 6.0, January 2024) Burned Area Reflectance Classification Thematic Burn Severity Mosaic for 2023 (ver. 6.0, January 2024) Prairie Fire Assessment of Fire Occurrence Dataset (FOD) points location (ver. 6.0, January 2024) Undersized Fire Mapping Program Burned Area Boundaries (ver. 5.0, October 2023) National Park Service Thematic Burn Severity Mosaic in 1995 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 2013 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 1996 (ver. 6.0, January 2024) National Park Service Thematic Burn Severity Mosaic in 2018 (ver. 6.0, January 2024)