Skip to main content
Advanced Search

Filters: Tags: location (X) > Categories: Publication (X) > partyWithName: Landscape Conservation Cooperative Network (X)

10 results (86ms)   

View Results as: JSON ATOM CSV
A genecological approach was used to explore genetic variation for survival in Artemisia tridentata (big sagebrush). Artemisia tridentata is a widespread and foundational shrub species in western North America. This species has become extremely fragmented, to the detriment of dependent wildlife, and efforts to restore it are now a land manage-ment priority. Common- garden experiments were established at three sites with seed-lings from 55 source- populations. Populations included each of the three predominant subspecies, and cytotype variations. Survival was monitored for 5 years to assess dif-ferences in survival between gardens and populations. We found evidence of adap-tive genetic variation for survival. Survival...
We examined patterns of genetic variation and diversity of extant pygmy rabbit (Brachylagus idahoensis) populations across the species’ current range in Nevada and California. Our aims were to determine population genetic structure and levels of diversity across the southern portion of the species’ range. We genotyped 13 microsatellite loci from 194 fecal samples collected across 14 localities. Our Bayesian cluster analyses found 2 genetically distinct groups: 1 in the Mono Basin of California and the other encompassing all remaining Nevada Great Basin populations. Considering only the Nevada Great Basin group, we found 4 minimally divergent groups that overlap spatially with many individuals maintaining composite...
Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity canaccommodate projected temperature change for this century. Evaluating clines in phenological traits and the extentand variation in plasticity can provide key information on assessing risk of maladaptation and developing strategiesto mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemi-sia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to lateNovember among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% couldbe assigned to plasticity and genetic variation...
A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species....
Understanding how annual climate variation affects population growth rates across a species’ range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species’ range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8175 observations of year-to-year change in...
Big sagebrush (Artemisia tridentata) is one of the most widespread and abundant plant species in the intermountain regions of western North America. This species occupies an extremely wide ecological niche ranging from the semi-arid basins to the subalpine. Within this large niche, three widespread subspecies are recognized. Montane ecoregions are occupied by subspecies vaseyana, while subspecies wyomingensis and tridentata occupy basin ecoregions. In cases of wide-ranging species with multiple subspecies, it can be more practical from the scientific and management perspective to assess the climate profiles at the subspecies level. We focus bioclimatic model efforts on subspecies wyomingensis, which is the most...
This publication identifies areas where big sagebrush populations are most and least vulnerable to climate change and demonstrates where continued investment in sagebrush conservation and restoration could have the most impact.
The sagebrush steppe is a patchwork of species and subspecies occupying distinctenvironmental niches across the intermountain regions of western North America. These ecosystems facedegradation from disturbances and exotic weeds. Using sagebrush seed that is matched to its appropriateniche is a critical component to successful restoration, improving habitat for the threatened greater sage-grouse and other species. The need for restoration is greatest in basin habitats composed of two subspecies:diploid basin big sagebrush (A. tridentatasubsp.tridentata) and tetraploid Wyoming big sagebrush (subsp.wyomingensis). In this study we assess seed weights across five subspecies-cytotype groups of bigsagebrush and examine...
Groundwater dependent ecosystems (GDEs) rely on near-surface groundwater. These systems are receiving more attention with rising air temperature, prolonged drought, and where groundwater pumping captures natural groundwater discharge for anthropogenic use. Phreatophyte shrublands, meadows, and riparian areas are GDEs that provide critical habitat for many sensitive species, especially in arid and semi-arid environments. While GDEs are vital for ecosystem services and function, their long-term (i.e. ~ 30 years) spatial and temporal variability is poorly understood with respect to local and regional scale climate, groundwater, and rangeland management. In this work, we compute time series of NDVI derived from sensors...