Skip to main content
Advanced Search

Filters: Tags: marsh (X) > Extensions: ArcGIS Service Definition (X)

19 results (57ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et al. 2016). GPS survey data (15,223 points), NAIP-derived Normalized Difference Vegetation Index (2010), a 10 m lidar DEM from 2007, and a 10 m canopy surface model were used to generate a model of predicted bias across marsh, mangrove, and cypress habitats. The predicted bias was then subtracted from...
thumbnail
This dataset represents salt marsh communities in the Northeast Atlantic coast. The classification was produced using a combination of Digital Elevation Model (DEM) and National Agriculture Imagery Program (NAIP) multispectral imagery. This dataset combined with "Tidal Marsh Vegetation Classification, no DEM, 3m, Northeast U.S." provides a contiguous classification of tidal marsh cover types from coastal Maine to Virginia. The eight distinct cover/community types identified are: High marsh: Area flooded during spring tides related to the lunar cycle and dominated by Spartina patens, Distichlis spicata, Juncus gerardii, and short form Spartina alterniflora. Other species include Juncus roemerianus, Scirpus pungens,...
thumbnail
This dataset represents salt marsh communities in the Northeast Atlantic coast. The classification was produced using National Agriculture Imagery Program (NAIP) multispectral imagery for areas where no DEM was available to complete the full classification. This dataset combined with "Tidal Marsh Vegetation Classification, DEM, Northeast U.S." provides a contiguous classification of tidal marsh cover types from coastal Maine to Virginia. The six distinct cover/community types identified are: 1. High marsh: Area flooded during spring tides related to the lunar cycle and dominated by Spartina patens, Distichlis spicata, Juncus gerardii, and short form Spartina alterniflora. Other species include Juncus roemerianus,...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Salt marshes classification of the South Atlantic Landscape Conservation Cooperative geography covers the northern Outer Banks (and extreme southeastern Virginia, Back Bay area) south through NC, SC, and Georgia to approximately Sapelo Island. The marsh classification is derived from Landsat 8 OLI imagery acquired in May 14-19, 2014. This georeferenced imagery was atmospherically corrected, mosaicked, and water masked prior to deriving a set of three Normalize Difference Indices (NDX) bands: Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) and Normalized Difference Soil Index (NDSI). Prospective salt marshes and associated tidal non-forested wetlands were classified using object-oriented...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
This data set contains vector point information. The original data set was collected through visual field observation by Jennke Visser (University of Louisiana-Lafayette). The observations were made while flying over the study area in a helicopter. Flight was along north/south transects spaced 2000 meters apart from the Texas / Louisiana State line to Corpus Christie Bay. Vegetative data was obtained at pre-determined stations spaced at 1500 meters along each transect. The stations were located using a Global Positioning System (GPS) and a computer running ArcGIS. This information was recorded manually onto field tally sheets and later this information was entered into a Microsoft Excel database using Capturx software...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
This data set contains vector point information. The original data set was collected through Texas A&M University-Kingsville a helicopter survey was flown October 2-3rd of 2011 by Dr. Jenneke Visser (University of Louisiana at Lafayette) and Michael Mitchell. Data from this survey was used to produce this point file. Each feature includes the vegetation type at the point as well as the class used when classifying. Each feature is labeled either reference or accuracy assessment based on what it was used for during analysis. Flight was along north/south transects spaced 2000 meters apart from the Corpus Christi Bay to the Sabine River. Vegetative data was obtained at pre-determined stations spaced at 1500 meters along...
thumbnail
The data include two datasets Tidal Restrictions (Points) and the Tidal Restrictions Metric. Tidal Restrictions (Points) depicts tidal restrictions and, along with the Tidal Restrictions Metric, the potential impact of tidal restrictions on upstream salt marshes along the North Atlantic coast of the United States (Maine to Virginia). Tidal restrictions include undersized culverts and bridges, tide gates, dikes, and other structures that interfere with normal tidal flushing in estuarine systems. Each potential tidal restriction and tidal region upstream of each tidal restriction has been assigned a value ranging from 0 (no effect from the restriction) to 1 (severe effect). The value represents an estimate of the...
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...
thumbnail
This dataset represents a combined file indicating where a Digital Elevation Model (DEM) was and was not used in the tidal marsh classifications "Tidal Marsh Vegetation Classification, DEM, 3m, Northeast U.S." and "Tidal Marsh Vegetation Classification, no DEM, 3m, Northeast U.S.". For more information about the development of the data please contact Mo Correll at Maureen.correll@maine.edu. "Tidal Marsh Vegetation Classification, DEM, 3m, Northeast U.S.", "Tidal Marsh Vegetation Classification, no DEM, 3m, Northeast U.S.", and "DEM Difference in Tidal Marsh Vegetation Classification, 3m, Northeast U.S." are products of the Saltmarsh Habitat and Avian Research Program (www.tidalmarshbirds.org).
thumbnail
Changes in tidal marsh area and habitat type in response to sea-level rise were modeled using the Sea Level Affecting Marshes Model (SLAMM 6) that accounts for the dominant processes involved in wetland conversion and shoreline modifications during long-term sea level rise (Park et al. 1989; Successive versions of the model have been used to estimate the impacts of sea level rise on the coasts of the U.S. The model was produced by Warren Pinnacle Consulting, Inc. for the U.S. Fish and Wildlife Service. The SLAMM version 6 technical document can be accessed at http://warrenpinacle.com/prof/SLAMM. SLAMM outputs were converted from raster to vector features. Land cover (wetland) types were generalized to MesoHabitat...


    map background search result map search result map coastal Texas marsh survey points - 2011 coastal Texas marsh survey points - 2012 Seaside Sparrow- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Black Skimmer- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Clapper Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Hudsonian Godwit- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Piping Plover - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Royal Tern - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Western Sandpiper- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Wilson's Plover - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Sandwich Tern- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Whooping Crane - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Marsh Classification: Vector Polygons Tidal Marsh Vegetation Classification, DEM, 3m, Northeast U.S. DEM Difference in Tidal Marsh Vegetation Classification, 3m, Northeast U.S. Tidal Marsh Vegetation Classification, no DEM, 3m, Northeast U.S. Tidal Restrictions, Version 3.0, North Atlantic U.S. Coast LEAN-Corrected Collier County DEM for wetlands coastal Texas marsh survey points - 2011 LEAN-Corrected Collier County DEM for wetlands Whooping Crane - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Black Skimmer- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Clapper Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Piping Plover - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Black Rail- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Seaside Sparrow- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Hudsonian Godwit- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Royal Tern - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Western Sandpiper- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Wilson's Plover - Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions Sandwich Tern- Potential Habitat Under Sea Level Affecting Marshes Model (SLAMM) Conditions coastal Texas marsh survey points - 2012 Marsh Classification: Vector Polygons Tidal Marsh Vegetation Classification, no DEM, 3m, Northeast U.S. Tidal Marsh Vegetation Classification, DEM, 3m, Northeast U.S. DEM Difference in Tidal Marsh Vegetation Classification, 3m, Northeast U.S. Tidal Restrictions, Version 3.0, North Atlantic U.S. Coast