Skip to main content
Advanced Search

Filters: Tags: mathematical modeling (X) > partyWithName: U.S. Geological Survey (X)

35 results (68ms)   

View Results as: JSON ATOM CSV
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled ACCESS 1.0 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
The hydrologic response units (HRUs) available here were used in the Precipitation Runoff Modeling System (PRMS) of southern Guam documented by Rosa and Hay (2017). A Geographic Information System (GIS) file for the HRUs is provided as a shapefile with attributes ParentHRU, Region, and RegionHRU identifying the numbering convention used in the PRMS_2016 southern Guam model parameter files and Rosa and Hay (2017) report. Hydrologic response units (HRUs) were delineating using the processing steps outlined in Viger and Leavesley (2007) and a 5-meter digital elevation model (DEM) derived by Johnson (2012) using the Joint Airborne LIDAR Bathymetry Technical Center of Expertise topobathy data (National Oceanic and Atmospheric...
thumbnail
Parameter values for the Precipitation Runoff Modeling System (PRMS) using the National Hydrologic Modeling (NHM) infrastructure. The contents of the attached zip folder are a direct download from the USGS bitbucket repository titled National Hydrologic Model Parameter Database (NhmParamDb) (https://my.usgs.gov/bitbucket/projects/MOWS/repos/nhmparamdb/browse). The NhmParamDb is stored using a Git version control system, which tracks modifications to the master dataset through 'commits'. Each commit has a unique code to allow for retroactive identification of any given component of the repository. The specific attributes of the download contained in this release are: Date: May 8, 2017 Commit: 6ccc41d5688 Filename:...
thumbnail
This polygon shapefile represents model simulated flood-inundation extents for the Muddy River, near Moapa Nevada. A flood frequency analysis was performed at USGS streamgage 09416000 - Muddy River near Moapa, Nevada, to estimate the 50, 20, 10, 4, 2, and 1-percent annual exceedance probability (AEP) flood streamflows. The flood-inundation extents for the 50-, 20-, 10-, 4-, 2-, and 1-percent AEP floods were simulated for the current levee location in 2019 and for the new levee location of the proposed restoration. One model simulation represents the levee at its current (existing) location in 2019 on the east bank of the river and referred to as ‘current conditions (2019).’ A second model simulation removes the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled GFDL-CM3 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
This data release contains output and components of the initial conterminous United States (CONUS) application of the Precipitation-Runoff Modeling System (PRMS) as implemented in the National Hydrologic Model (NHM) infrastructure (Regan et al, 2018). The PRMS version 5.0.0 hydrologic simulation code was used with the accompanying parameter files in the NHM infrastructure to produce the attached output files. Model input climate drivers include climate data derived from the Daymet gridded data set version 2 (Thornton et al., 2014) with values spatially-distributed to the HRUs using the USGS Geo Data Portal (https://cida.usgs.gov/gdp/; Blodgett et al., 2011). The parameter values are maintained in the National Hydrologic...
thumbnail
This data set archives all inputs, outputs and scripts needed to reproduce the findings of W.H. Farmer and G.F. Koltun in the 2017 Journal of Hydrology Regional Studies article entitled “Geospatial Tools Effectively Estimated Nonexceedance Probabilities of Daily Streamflow at Ungauged and Intermittently Gauged Locations in Ohio”. Input data includes observed streamflow values, in cubic feet per second, for 152 streamgages in and around Ohio from 01 January 2009 through 31 August 2015. Data from the Ohio Environmental Protection Agency on where and when water quality samples were taken are also provided. Geospatial locations are provided for all streamgages and sampling sites considered. ESRI ArcGIS shapefiles are...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CESM1-BGC Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled MIROC5 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled CCSM4 Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the fifth...
thumbnail
These data can be used to replicate the application of MWBMglacier as described in two journal articles: 1) Enhancement of a parsimonious water balance model to simulate surface hydrology in a glacierized watershed (in review), and 2) Hydrologic regime changes in a high-latitude glacierized watershed under future climate conditions (doi:10.3390/w10020128). These simulations provide results from historical and 12 future general circulation model scenarios for the period 1949-2099 to determine the potential effects of climate change on the hydrology and water quality of a snow-dominated mountainous environment. In addition to the inputs and outputs, this Data Release includes summaries of the input and output data...
The U.S. Geological Survey (USGS) National Extent Hydrogeologic Framework for National Water Census (NEHF) project is a multi-year effort (2022 through 2025) that will compile existing assets (approaches, data, software, etc.), develop a strategic plan, and implement an operational framework that is dynamic and multi-scale. Within the USGS, numerical groundwater-flow and solute- and heat-transport models have been created for a variety of purposes that include water-resource assessments, contaminant-transport evaluations, and water-management planning. These models are often supported by hydrogeologic-framework studies that describe the surface and subsurface distribution of geologic materials and their hydrologic...
thumbnail
The stream segments available here were used in the Precipitation Runoff Modeling System (PRMS) of southern Guam documented by Rosa and Hay (2017). A Geographic Information System (GIS) file for the stream segments is provided as a shapefile with attributes ParentSeg, Region, and RegionSeg identifying the numbering convention used in the PRMS_2016 southern Guam model parameter files and Rosa and Hay (in press) report. Stream segments were derived using the processing steps outlined in Viger and Leavesley (2007) describing drainage network processing and a 5-meter digital elevation map (DEM) derived by Johnson (2012) using the Joint Airborne LIDAR Bathymetry Technical Center of Expertise topobathy data (National...
thumbnail
A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of...
thumbnail
The PRMS_2016 folder contains the input files needed to run each of the modeled regions in southern Guam, the calibration data files, and a README_PRMS_2016.txt document that describes the contents of this archive and the execution of the model batch files.
thumbnail
This point shapefile contains positional data for 2,205 locations at the Muddy River, near Moapa, Nevada, April 1 to August 9, 2019. Positional data were collected using either a single-base real-time kinematic (RTK) global navigation satellite system (GNSS) or a total station. The survey data primarily were used to define 105 cross-sections, with a secondary use as vertical precision verification for lidar data.
thumbnail
This polygon shapefile represents the boundaries of the current (2019) and proposed levee locations used to simulate flood-inundation extents for the at Muddy River, near Moapa, Nevada. The new levee location is proposed as part of a river restoration plan for selected reaches of the Muddy River.
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled HadGEM2-CC Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
This data release contains monthly 270-meter resolution Basin Characterization Model (BCMv8) climate and hydrologic variables for Localized Constructed Analog (LOCA; Pierce et al., 2014)-downscaled HadGEM2-ES Global Climate Model (GCM) for Representative Concentration Pathway (RCP) 4.5 (medium-low emissions) and 8.5 (high emissions) for hydrologic California. The LOCA climate scenarios span water years 1950 to 2099 with greenhouse-gas forcings beginning in 2006. The LOCA downscaling method has been shown to produce better estimates of extreme events and reduces the common downscaling problem of too many low-precipitation days (Pierce et al., 2014). Ten GCMs were selected from the full ensemble of models from the...
thumbnail
We projected future streamflow outcomes arising from climate change for the southwestern United States during the 21st century due to climate change under two possible greenhouse gas concentration pathways (RCP4.5 and 8.5). The results inform water managers about the future risks of drought in their water resource regions by providing bounds on the possible locations and extents of streamflow loss. To get to these results, we used downscaled future and historical climate data from seven models to drive a new, calibrated SPAtially Referenced Regression On Watershed attributes (SPARROW) streamflow model (Wise and others, 2019, Miller and others, 2020). Temperature and precipitation data come from the NASA Earth Exchange...


map background search result map search result map Data Supporting The Geochemical Atlas of Alaska, 2016 National Hydrologic Model Parameter Database: 2017-05-08 Download Geospatial Tools Effectively Estimate Nonexceedance Probabilities of Daily Streamflow at Ungauged and Intermittently Gauged Locations in Ohio: Data Release Southern Guam watershed model, PRMS_2016 Stream Segments for the southern Guam watershed model, PRMS_2016 Hydrologic Response Units (HRUs) for the Southern Guam watershed model, PRMS_2016 Supporting data for two MWBMglacier applications to the Copper River basin in Alaska Application of the National Hydrologic Model Infrastructure with the Precipitation-Runoff Modeling System (NHM-PRMS), Uncalibrated Version 5) Real-time kinematic global navigation satellite system (GNSS) and total station (TS) survey points at Muddy River, near Moapa, Nevada 4) Current and proposed levee locations at Muddy River, near Moapa, Nevada 1) Simulated flood-inundation extents for the Muddy River, near Moapa, Nevada Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Historic and projected streamflow for the southwestern United States (1975-2099) Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CCSM4 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model GFDL-CM3 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-ES Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-CC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model MIROC5 4) Current and proposed levee locations at Muddy River, near Moapa, Nevada 5) Real-time kinematic global navigation satellite system (GNSS) and total station (TS) survey points at Muddy River, near Moapa, Nevada 1) Simulated flood-inundation extents for the Muddy River, near Moapa, Nevada Stream Segments for the southern Guam watershed model, PRMS_2016 Hydrologic Response Units (HRUs) for the Southern Guam watershed model, PRMS_2016 Southern Guam watershed model, PRMS_2016 Geospatial Tools Effectively Estimate Nonexceedance Probabilities of Daily Streamflow at Ungauged and Intermittently Gauged Locations in Ohio: Data Release Supporting data for two MWBMglacier applications to the Copper River basin in Alaska Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model ACCESS 1.0 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CCSM4 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model CESM1-BGC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model GFDL-CM3 Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-ES Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model HadGEM2-CC Future Climate and Hydrology from the Basin Characterization Model (BCMv8) using LOCA-downscaled Global Climate Model MIROC5 Historic and projected streamflow for the southwestern United States (1975-2099) Data Supporting The Geochemical Atlas of Alaska, 2016 Application of the National Hydrologic Model Infrastructure with the Precipitation-Runoff Modeling System (NHM-PRMS), Uncalibrated Version National Hydrologic Model Parameter Database: 2017-05-08 Download