Skip to main content
Advanced Search

Filters: Tags: modelling (X) > partyWithName: Devendra Dahal (X)

10 results (41ms)   

View Results as: JSON ATOM CSV
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...
thumbnail
Spatially accurate annual crop cover maps are an important component to various planning and research applications; however, the importance of these maps varies significantly with the timing of their availability. Utilizing a previously developed crop classification model (CCM), which was used to generate historical annual crop cover maps (classifying nine major crops: corn, cotton, sorghum, soybeans, spring wheat, winter wheat, alfalfa, other hay/non alfalfa, fallow/idle cropland, and ‘other’ as one class for remaining crops), we hypothesized that such crop cover maps could be generated in near real time (NRT). The CCM was trained on 14 temporal and 15 static geospatial datasets, known as predictor variables, and...


    map background search result map search result map Accuracy of Rapid Crop Cover Maps of Conterminous United States for 2008 - 2016 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2008 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2009 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2010 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2011 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2012 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2013 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2014 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2015 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2016 Accuracy of Rapid Crop Cover Maps of Conterminous United States for 2008 - 2016 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2008 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2009 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2010 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2011 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2012 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2013 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2014 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2015 Accuracy of Rapid Crop Cover Map of Conterminous United States for 2016