Skip to main content
Advanced Search

Filters: Tags: multibeam (X)

296 results (151ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. Memphis Reservoir is a water supply lake used by the city of Memphis in northeastern Missouri. The surface...
thumbnail
Morris Lake, also known as Newton Reservoir, has been the source of drinking water for the Town of Newton, New Jersey, since the early 1900s. Although Morris Lake has been used as a source of drinking water for many years, its capacity was previously unknown. In April 2018, the U.S. Geological Survey and the New Jersey Department of Environmental Protection conducted a bathymetric survey of Morris Lake using a multibeam echosounder to map the reservoir. The points measured with the multibeam echosounder were combined with lidar data above the water surface and processed to create a 3.3-foot (1 meter) raster grid of the bathymetric surface, bathymetric contours at 2-foot intervals of depth and elevation, and an elevation-area-capacity...
thumbnail
These data are high-resolution bathymetry (riverbed elevation) and depth-averaged velocities in ASCII format, generated from hydrographic and velocimetric surveys near highway bridge structures over the Missouri River between Kansas City and St. Louis, Missouri, for dates ranging from 2010 to 2017. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and...
thumbnail
Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south...
Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: Barnstable County, Bristol County, Buzzards Bay, CZM, Cape Cod Canal, All tags...
thumbnail
Integrated terrain models covering 16,357 square kilometers of the Massachusetts coastal zone and offshore waters were built to provide a continuous elevation and bathymetry terrain model for ocean planning purposes. The area is divided into the following four geographical areas to reduce file size and facilitate publishing: Massachusetts Bay from the Massachusetts-New Hampshire border south to Provincetown and Scituate and east to Stellwagen Bank; Cape Cod Bay from Provincetown to Scituate and south to Hyannis; Buzzards Bay from the Cape Cod Canal southwest to the State border including the Elizabeth Islands and extending north to Fall River and Mount Hope Bay; and Nantucket and Vineyard Sounds, from Hyannis south...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor south of Long Island, New York, were carried out in November 1998 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The purpose of the multibeam echosounder surveys was to explore the bathymetry and backscatter intensity of the sea floor in several areas off the southern coast of Long Island along the 20-meter isobath. Survey areas offshore of Fire Island Inlet, Moriches Inlet, Shinnecock Inlet, and southwest of Montauk Point were about 1 kilometer (km) wide and 10 km long. The area was mapped by the U.S. Geological Survey with support from the Canadian Hydrographic Service and the University...
thumbnail
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Citation, Downloadable, Map Service; Tags: Coastal and Marine Geology Program (CMGP), GeoTIFF image, Hudson Canyon, Middle Atlantic Bight, NOAA ship Ronald H. Brown, All tags...
thumbnail
The Hudson Canyon begins on the outer continental shelf off the east coast of the United States at about 100-meters (m) water depth and extends offshore southeastward across the continental slope and rise. A multibeam survey was carried out in 2002 to map the bathymetry and backscatter intensity of the sea floor of the Hudson Canyon and adjacent slope and rise. The survey covered an area approximately 205 kilometers (km) in the offshore direction, extending from about 500 m to about 4,000 m water depth, and about 110 km in the alongshore direction, centered on the Hudson Canyon. The sea floor was mapped using a SeaBeam Instruments 2112 multibeam echosounder aboard the National Oceanic and Atmospheric Administration...
thumbnail
Surveys of the bathymetry and backscatter intensity of the sea floor of the Historic Area Remediation Site (HARS), offshore of New York and New Jersey, were carried out in 1996, 1998, and 2000 using a Simrad EM1000 multibeam echosounder mounted on the Canadian Coast Guard ship Frederick G. Creed. The objective of the multiple echosounder surveys was to map the bathymetry and surficial sediments over time as dredged material was placed in the HARS to remediate contaminated sediments. Maps derived from the multibeam surveys show sea-floor bathymetry, shaded-relief bathymetry, and backscatter intensity (a measure of sea-floor texture and roughness) at a spatial resolution of 3 meters. The area was mapped by the U.S....
thumbnail
These data are high-resolution bathymetry (riverbed elevation) in ASCII XYZ format, generated from the June 6, 2017, hydrographic survey of the Gasconade River near structure A2550 on Missouri State Highway 42 near Vienna, Missouri, to help identify possible effects from extreme flooding on May 1-2, 2017. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES...
thumbnail
These data are high-resolution bathymetry (riverbed elevation) and depth-averaged velocities in ASCII format, generated from hydrographic and velocimetric surveys of the Missouri River near Structure A0767 on Interstate 435 in Kansas City, Missouri, in 2010, 2011, and 2015. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and the horizontal and vertical...
thumbnail
These data are high-resolution bathymetry (riverbed elevation) and depth-averaged velocities in ASCII format, generated from hydrographic and velocimetric surveys of the Missouri River near Structure A5664 on Missouri State Highway 13 at Lexington, Missouri, in 2011, 2013, and 2017. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and the horizontal and...
thumbnail
These data are high-resolution bathymetry (riverbed elevation) and depth-averaged velocities in ASCII format, generated from hydrographic and velocimetric surveys of the Missouri River near Structure A6288 on Missouri State Highway 19 at Hermann, Missouri, in 2011, 2013, and 2017. Hydrographic data were collected using a high-resolution multibeam echosounder mapping system (MBMS), which consists of a multibeam echosounder (MBES) and an inertial navigation system (INS) mounted on a marine survey vessel. Data were collected as the vessel traversed the river along planned survey lines distributed throughout the reach. Data collection software integrated and stored the depth data from the MBES and the horizontal and...
thumbnail
Marine geophysical mapping of the Queen Charlotte Fault in the eastern Gulf of Alaska was conducted in 2016 as part of a collaborative effort between the U.S. Geological Survey and the Alaska Department of Fish and Game to understand the morphology and subsurface geology of the entire Queen Charlotte system. The Queen Charlotte fault is the offshore portion of the Queen Charlotte-Fairweather Fault: a major structural feature that extends more than 1,200 kilometers from the Fairweather Range of southern Alaska to northern Vancouver Island, Canada. The data published in this data release were collected along the Queen Charlotte Fault between Cross Sound and Noyes Canyon, offshore southeastern Alaska from May 18 to...
thumbnail
U.S. Geological Survey Northeast Region inland bathymetric survey data are compiled to create a survey inventory providing survey records including survey system and product information, and links to survey datasets when available. Dataset footprints including this information and showing the location and extent of surveys can be downloaded as a shapefile or geodatabase and can be accessed through Spatial Services provided here.


map background search result map search result map Grid of the sea-floor bathymetry offshore of Fire Island Inlet, New York, in 1998 (3-m resolution Esri binary grid, Mercator, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1998 (polyline shapefile, geographic, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 2000 (polyline shapefile, geographic, WGS 84) SiteID-008 Thompson River at MO-6 near Trenton, MO GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) GeoTIFF image of the shaded-relief bathymetry, pseudo-colored by backscatter intensity, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) SiteID-014 Bitterroot River at US-93 near Hamilton, MT SiteID-016 Blackfoot River at I-90, at Bonner, MT Site G04 Gasconade River Bathymetry at Structure A2550 on Missouri State Highway 42 near Vienna, Missouri, June 2017 Buzzards Bay: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83). Massachusetts Bay and adjacent land: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83) Geospatial Bathymetry Dataset and elevation-area-capacity tables for Morris Lake (Newton Reservoir), New Jersey, 2018 Elevation contours, Morris Lake (Newton Reservoir), New Jersey, 2018 Bathymetry and Velocity Data from Surveys at Highway Bridges crossing the Missouri River between Kansas City and St. Louis, Missouri, January 2010 through May 2017 Site 14 Missouri River Bathymetry and Velocimetry Data at Structure A5664 on Missouri State Highway 13 at Lexington, Missouri, July 2011 through May 2017 Site 21 Missouri River Bathymetry and Velocimetry Data at Structure A6288 on Missouri State Highway 19 at Hermann, Missouri, July 2011 through May 2017 Site 12 Missouri River Bathymetry and Velocimetry Data at Structure A0767 on Interstate 435 in Kansas City, Missouri, March 2010 through June 2015 Multibeam backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 8-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid) Memphis Reservoir near Memphis, Missouri, 2021 U.S. Geological Survey Northeast Region Inland to Coastal Zone Bathymetric Surveys SiteID-014 Bitterroot River at US-93 near Hamilton, MT Site G04 Gasconade River Bathymetry at Structure A2550 on Missouri State Highway 42 near Vienna, Missouri, June 2017 SiteID-016 Blackfoot River at I-90, at Bonner, MT Site 12 Missouri River Bathymetry and Velocimetry Data at Structure A0767 on Interstate 435 in Kansas City, Missouri, March 2010 through June 2015 Site 14 Missouri River Bathymetry and Velocimetry Data at Structure A5664 on Missouri State Highway 13 at Lexington, Missouri, July 2011 through May 2017 SiteID-008 Thompson River at MO-6 near Trenton, MO Site 21 Missouri River Bathymetry and Velocimetry Data at Structure A6288 on Missouri State Highway 19 at Hermann, Missouri, July 2011 through May 2017 Memphis Reservoir near Memphis, Missouri, 2021 Elevation contours, Morris Lake (Newton Reservoir), New Jersey, 2018 Geospatial Bathymetry Dataset and elevation-area-capacity tables for Morris Lake (Newton Reservoir), New Jersey, 2018 Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 1998 (polyline shapefile, geographic, WGS 84) Tracklines of a multibeam survey of the sea floor in the Historic Area Remediation Site in 2000 (polyline shapefile, geographic, WGS 84) Buzzards Bay: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83). Massachusetts Bay and adjacent land: Polygon boundaries for source data of a continuous bathymetry and topography terrain model of the Massachusetts coastal zone and continental shelf: (Esri polygon shapefile, Geographic, NAD 83) Bathymetry and Velocity Data from Surveys at Highway Bridges crossing the Missouri River between Kansas City and St. Louis, Missouri, January 2010 through May 2017 GeoTIFF image of the shaded-relief bathymetry, pseudo-colored by backscatter intensity, of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) GeoTIFF image of the backscatter intensity of the sea floor of the Hudson Canyon region (100-m resolution, Mercator, WGS 84) Multibeam backscatter data collected in the eastern Gulf of Alaska during USGS Field Activity 2016-625-FA using a Reson 7160 multibeam echosounder (10 meter resolution, 8-bit GeoTIFF, UTM 8 WGS 84, WGS 84 Ellipsoid) U.S. Geological Survey Northeast Region Inland to Coastal Zone Bathymetric Surveys