Skip to main content
Advanced Search

Filters: Tags: permafrost (X) > partyWithName: Western Alaska Landscape Conservation Cooperative (X)

52 results (57ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The YKD is also home to the largest subsistence-based economy in Alaska. Yet, the low-lying landscape mosaic characterizing the YKD is at risk of massive change associated with projected sea level rise (SLR), increasing storm frequency and severity and permafrost degradation due to future climate change. Therefore, to conserve ecosystem services associated with the botanical and faunal richness in the YKD, management strategies in the region should not only be based on current ecosystem conditions, but also incorporate projected changes in landscape composition. The goal of this project is to provide managers and people living in the YKD, an assessment of the vulnerability of the landscape to future change and to...
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
The Integrated Ecosystem Model is designed to help resource managers understand the nature and expected rate of landscape change. Maps and other products generated by the IEM will illustrate how arctic and boreal landscapes are expected to alter due to climate-driven changes to vegetation, disturbance, hydrology, and permafrost. The products will also provide resource managers with an understanding of the uncertainty in the expected outcomes.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
We mosaicked twelve LandSat-8 OLI satellite images taken during the summer of 2014, which were used in an object based image analysis (OBIA) to classify the landscape. We mapped seventeen of the most dominant geomorphic land cover classes on the ACP: (1) Coastal saline waters, (2) Large lakes, (3) Medium lakes, (4) Small lakes, (5) Ponds, (6) Rivers, (7) Meadows, (8) Coalescent low-center polygons, (9) Low-center polygons, (10) Flat-center polygons, (11) High-center polygons, (12) Drained slope, (13) Sandy barrens, (14) Sand dunes, (15) Riparian shrub, (16) Ice, and (17) Urban (i.e. towns and roads). Mapped products were validated with an array of oblique aerial/ground based photography (Jorgenson et al., 2011)...
thumbnail
This pilot project has initiated a long-term integrated modeling project that aims todevelop a dynamically linked model framework focused on climate driven changes tovegetation, disturbance, hydrology, and permafrost, and their interactions and feedbacks.This pilot phase has developed a conceptual framework for linking current state-of-thesciencemodels of ecosystem processes in Alaska – ALFRESCO, TEM, GIPL-1 – and theprimary processes of vegetation, disturbance, hydrology, and permafrost that theysimulate. A framework that dynamically links these models has been defined and primaryinput datasets required by the models have been developed.
Changes to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons were mapped for over 22,000 km of coastline along the Bering Sea and Gulf of Alaska coasts in western Alaska. Changes to rivers and lakes near the coast were also captured. The analysis was based on time-series analysis of Landsat imagery, 1972–2013. An annual imeseries of suitable Landsat imagery was compiled and analyzed for changes in near-infrared reflectance to identify areas that transitioned from land to water, or vice-versa, over the study period. The timing of changes was also identified. Thousands of coastal changes over the 42-year study period exceeded the 60-m pixel resolution of the Multispectral...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
This project established a permafrost monitoring network in this region, providing a baseline of permafrost thermal regimes for assessing future change at a total of 26 automated monitoring stations. Stations have collected year-round temperature data from the active layer and the permafrost starting from the summer of 2011. The strong correspondence between spatial variability in permafrost thermal regime and an existing ecotype map allowed for the development of a map of ‘permafrost thermal classes’ for the broader study region. Further, the annual temperature data was used to calibrate models of soil thermal regimes as a function of climate, providing estimates of both historic and future permafrost thermal regimes...
thumbnail
A high spatial resolution storm surge model was developed for the YK Delta area to assess biological impacts of storm surges under current and future climates. Storm surges are expected to be more frequent and more severe in the YK Delta area due to climate change and sea level rise. The biological impacts in the YK Delta due to the changed storm surges could be extreme.The model was assessed with respect to measured water level data at the coast and, where available, spatial extent of inundation, for 6 storms from the period 1992 to 2011. In total, inundation projections from 9 historical storms (5 from the assessment + 4 others) were developed. For each storm, an spatial inundation index (time-integral of water...
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: ARCHAEOLOGICAL AREAS, ARCHAEOLOGICAL AREAS, Academics & scientific researchers, COASTAL AREAS, COASTAL AREAS, All tags...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is...
The project will complete an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work will provide important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, is known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast is not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of...
Categories: Data, Project; Tags: BARRIER ISLANDS, BARRIER ISLANDS, COASTAL LANDFORMS/PROCESSES, COASTAL LANDFORMS/PROCESSES, DEGRADATION, All tags...
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...
thumbnail
This project resulted in an extensive mapping of coastal change along the entire coastline of the Western Alaska Landscape Conservation Cooperative (LCC). The work provides important baseline information on the distribution and magnitude of landscape changes over the past 41 years. The extent of change to the coastline and to coastal features, such as spits, barrier islands, estuaries, tidal guts and lagoons, was known to be substantial in some areas along the coast (e.g., portions of the Yukon–Kuskokwim Delta), although the extent of change along the full Bering Sea coast was not well documented. With this analysis, changes can be summarized for different land ownerships or other units to assess the extent of recent...
Categories: Data; Tags: BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, BARRIER ISLANDS, COASTAL AREAS, All tags...


map background search result map search result map Alaskan Arctic Coastal Plain Polygonal Geomorphology Map Summary handout - Factsheet Simulated Mean Annual Ground Temperature Integrated Ecosystem Model Reports IEM-CSC Factsheet with Supplement, 2015 Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Historical Stand Age 1940-1949 Historical Stand Age 1900-1909 Historical Stand Age 1960-1969 Historical Stand Age 1910-1919 Summary handout - Factsheet Alaskan Arctic Coastal Plain Polygonal Geomorphology Map Simulated Mean Annual Ground Temperature Integrated Ecosystem Model Reports IEM-CSC Factsheet with Supplement, 2015 Historical Stand Age 1980-1989 Historical Stand Age 1870-1879 Historical Stand Age 1940-1949 Historical Stand Age 1900-1909 Historical Stand Age 1960-1969 Historical Stand Age 1910-1919